Summary
It is unknown whether biological processes make direct use of quantum effects, as opposed to depending merely on the influence of quantum physics on chemical bonding and molecular structure. We are testing the hypothesis that entangled pairs of phosphorus-31 atoms may link the function of remotely located neurons within the vertebrate brain. Using a rat brain model and an array of instruments and techniques, we are exploring the possibility that dissociation of pyrophosphate molecules sends entangled 31P atoms into separate neurons with physiologic consequences. We are also investigating whether there are systematic differences in neuronal action potential when we subject the neuronal tissue to different isotopes of lithium. If we can show that remotely entangled atoms link the functions of separate neurons, this may provide insight into a range of biological mysteries, such as olfaction, magneto-navigation by the European Robin, and the actions of lithium in treating mood disorders.
Related Content

Portable Quantum Dot Measurement System
Summary Detecting heavy metals in water is essential to ensure clean drinking water and appropriate regulatory decisions following an accident (e.g., a spill) or an emergency. Traditionally, high-sensitivity detection of heavy metals requires bulky and costly (to purchase and operate) lab-based instruments. We propose developing a palm-sized, element-specific, highly-sensitive, battery-operated, smartphone-controlled system for on-site measurement […]
July 21, 2022

Quantum Information Processing with Molecular Lattices
The aim of the work is to develop theoretical tools to simulate and predict the behaviour of a one-dimensional chain of trapped dipolar molecules and to study the nature of entanglement as a design resource.
June 1, 2017

Next Generation Quantum Sensors
We are developing new semiconductor p-n junctions and designing novel nanowire arrays that have the potential to significantly enhance the ability to detect light at the single photon level over an unprecedented wavelength range from the ultraviolet to infrared.
June 1, 2017

Quantum Sensing with Small Quantum Systems
Summary There are small quantum systems over which we have very good control and which have long lifetimes. Examples include the phosphorous (P) defect in silicon (Si) and the nitrogen vacancy (NV) defect in diamond. With P defect in Si, we focus on improving our understanding of the hyperpolarization mechanism to better enable engineering of […]
December 1, 2016