In magnetic conductors, the passage of current yields an electric field in the transverse direction even without an external magnetic field – this is known as the anomalous Hall effect (AHE). This effect can act as a convenient probe of spin ordering, magnetic textures, spin-orbit coupling, and band topology in solids, and can be further exploited for developing spintronic devices. Recently, it has been shown that low-symmetry materials can exhibit a nonlinear version of the AHE, called the NLAHE, which allows for additional material functionalities with potential practical applications. Three common low-symmetry semimetals, WTe2, MoTe2, and TaIrTe4, have exhibited the NLAHE. The first goal of this project is to measure the spin accumulation and polarization direction on the surfaces and edges of these three materials using a unique approach combining spin transport techniques with van der Waals engineering in an inert atmosphere. With an applied current, there should be a net spin accumulation on the sample boundaries and by changing the direction of current injection or tuning with gates, the spin degrees of freedom can be manipulated. The spin polarization can also be different on the surfaces and the edges due to the thickness of the layers in the semimetals. By investigating the current- and gate-dependent accumulation and polarization in the sample, we may determine a new route for the electrical control of magnetism. Further, NLAHE in the semimetals can potentially be used as novel quantum sensors to detect radiofrequency, terahertz and infrared waves. For example, the Hall response of a NLAHE material coupled to a coplanar waveguide can be measured as broadband radiofrequency signal propagates in the waveguide. This would demonstrate the capability of NLAHE to detect broadband waves at radiofrequency. Success in these experiments will allow for exotic spintronic devices and sensors to be developed with functionalities unavailable with traditional materials, which with potential benefits to applications in the defense and security sectors.
Figure 1. A coplanar waveguide coupling with an RF source delivers microwaves across a broadband (Mo/W)Te2 device, with contacts to measure the response.
Related Content

Ultrafast Dynamical Studies of Valley-Based Qubits
Summary As monolayers, transition metal dichalcogenides (TMDCs) – such as tungsten diselenide (WSe2) – become direct-bandgap semiconductors capable of emitting light. Compared to conventional direct-bandgap semiconductors, such as III-V semiconductors like GaAs, excitons (quasiparticles made of an electron hole bound with an electron) and single-layer TMDCs (SL-TMDCs) have much stronger binding energy. Excitons and […]
June 29, 2018

Quantum Light Sources Based on Deterministic Photon Subtraction
Summary This project develops new sources of light that utilize quantum entanglement to enhance imaging resolution and detection. We aim to go beyond simple photon pairs and advance our understanding and control of new quantum states of light. Our approach uses deterministic single-photon subtraction (removing of a specific photon from a pulse of light) […]
July 13, 2018

Rydberg Atom Array Quantum Simulator
Summary Quantum simulators enable probing the static and dynamic properties of correlated quantum many-body systems that would otherwise be numerically inaccessible using classical simulators. We are developing quantum simulators based on arrays of neutral atoms excited to Rydberg states. Such Rydberg atom arrays are advantageous for simulating the dynamics of interacting spin systems (Ising spin […]
February 27, 2020
Using Interactive Digital Storytelling to Represent Transformative Quantum Technologies in Augmented/Extended Reality Environments
Summary A major roadblock to the broader adoption of quantum technologies is the long learning curve associated with their seemingly abstract concepts. This often renders quantum technologies inaccessible to most audiences, especially through explanations using conventional scientific language. In this project, we develop novel methods of interactive digital storytelling – augmented and extended reality (AR/XR) […]
February 24, 2021