TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Quantum Sensing with Small Quantum Systems

    Go Back Back

    More Topics

    chemistry grand challenge nitrogen vacancy nv defect in diamond p defect in si phosphorus sensing silicon

    Summary

     

    There are small quantum systems over which we have very good control and which have long lifetimes. Examples include the phosphorous (P) defect in silicon (Si) and the nitrogen vacancy (NV) defect in diamond. With P defect in Si, we focus on improving our understanding of the hyperpolarization mechanism to better enable engineering of quantum systems that are highly and quickly polarizable with long coherence times. With the NV defect in diamond, we are developing control methods to suppress zero-field splitting, a miniaturized optics setup and a small package for the required microwave and control hardware. We also utilize the NV defect in diamond as a chemical sensing platform to enable sensing of a target molecule of choice. Advancements in these areas offer the potential to transform a host of technologies from gyroscopes to magnetometers.

     


     

    Principal Investigator (PI) or Team Coordinator

    David Cory

    sidebar icon sidebar icon
    Group sensing icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Quantum Light Sources Based on Deterministic Photon Subtraction
    TQT Sensing

    Quantum Light Sources Based on Deterministic Photon Subtraction

    Summary   This project develops new sources of light that utilize quantum entanglement to enhance imaging resolution and detection. We aim to go beyond simple photon pairs and advance our understanding and control of new quantum states of light. Our approach uses deterministic single-photon subtraction (removing of a specific photon from a pulse of light) […]

    July 13, 2018

    PI: Michal Bajcsy

    Skip Tags computation electrical & computer engineering + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Light Sources Based on Deterministic Photon Subtraction
    Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements

    Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements

    Summary  Magnetoelectric multiferroics are materials that exhibit correlated ferroelectric and ferromagnetic properties (i.e., a magnetoelectric effect). The resulting ability of these materials to simultaneously store data in electric polarization and magnetic moment could increase data storage density and data processing speed while reducing energy consumption. This project aims to design and fabricate new composite multiferroic […]

    February 1, 2023

    PI: Pavle Radovanovic

    Skip Tags magnetic

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements
    Quantum Simulation of Strongly Coupled Field Theories
    TQT Computation

    Quantum Simulation of Strongly Coupled Field Theories

    Strongly-coupled field theories describe both fundamental and applied quantum problems.

    August 10, 2017

    PI: Chris Wilson

    Skip Tags computation electrical & computer engineering + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Simulation of Strongly Coupled Field Theories
    Materials for Majorana-based Topological Qubits
    TQT Computation

    Materials for Majorana-based Topological Qubits

    Summary   Topological qubits offer a novel pathway to scalable quantum computing by simultaneously allowing for ease of coupling between qubits and strong decoupling of qubits from noise and dissipation. The most promising direction explores the topologically induced protection of theoretically predicted exotic quasiparticles, the so-called Majorana Zero Modes or MZMs. To-date MZMs, which follow […]

    January 28, 2019

    PI: Zbigniew Wasilewski

    Skip Tags computation majorana fermions + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Materials for Majorana-based Topological Qubits

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo