TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Quantum Material Multilayer Photonic Devices and Network

    Go Back Back

    More Topics

    2d carbon CMOS computation electrical & computer engineering excitons heterostructures high density large-binding energy materials optics photonics scalable seed fund TMDC wafer

    Summary 

    Realizing highly integrated quantum photonic devices on a chip can enable new opportunities for photonic quantum computation. In this project, we explore heterostructures of stacked two-dimensional (2D) materials, such transition metal dichalcogenides (TMDC) or graphene, combined with optical microcavities as a platform for such devices. 2D materials are extremely thin and flexible, and have emerged as a host for a range of exciting new quantum phenomena, in particular when different 2D materials are stacked together. We plan to address the challenges of stacking more than two layers of 2D materials and of extending the stacking methods to produce wafer-scale structures, as well as the challenges of making this platform compatible by with CMOS infrastructure for future integration towards large-scale quantum photonic computation and networks. We will achieve our goal through an interdisciplinary effort involving deep physical and chemical knowledge, state-of-the-art nanofabrication processing techniques and facilities, extensive material and device characterization measurements, and theoretical investigations.

    Figure 1. The calculated absorption spectra of a cavity containing a heterostructure made of multi-colour emitting layers. The three anti-crossings are a manifestation of strongly-coupled polariton states.

    Principal Investigator (PI) or Team Coordinator

    Na Young Kim

    sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
    TQT Communication

    Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires

    Summary   Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible,  we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement […]

    October 29, 2018

    PI: Michal Bajcsy & Michael Reimer

    Skip Tags communication electrical & computer engineering + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
    Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
    TQT Computation

    Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit

    Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing

    June 1, 2017

    PI: Na Young Kim

    Skip Tags carbon nanotubes computation + 4 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
    Portable Quantum Dot Measurement System

    Portable Quantum Dot Measurement System

    Summary Detecting heavy metals in water is essential to ensure clean drinking water and appropriate regulatory decisions following an accident (e.g., a spill) or an emergency. Traditionally, high-sensitivity detection of heavy metals requires bulky and costly (to purchase and operate) lab-based instruments. We propose developing a palm-sized, element-specific, highly-sensitive, battery-operated, smartphone-controlled system for on-site measurement […]

    July 21, 2022

    PI: Vassili Karanassios

    Skip Tags chemistry design + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Portable Quantum Dot Measurement System
    Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
    TQT Computation

    Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator

    Summary   In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]

    December 8, 2018

    PI: Na Young Kim

    Skip Tags computation grand challenge + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo