Summary
Fault-tolerance is essential to the performance of quantum technologies, but known schemes are extremely resource intensive. Thus, improving existing schemes or inventing new schemes is of central importance. This joint project is based on the realization that fault-tolerance schemes make use of symmetries in fundamental ways, and that studying the problem of fault tolerance broadly from a symmetry perspective may offer valuable insights. We will do so by focusing on fault-tolerance and control-error mitigation primitives that make explicit use of symmetries, and unveil fundamental connections between the two. This involves the study of decoherence and error control, and measures that counteract them in two settings: fault-tolerant universal quantum computation (FTQC) using magic state distillation; and computational phases of matter. We will address which types of symmetries lead to computationally universal phases of matter, and the minimum operational cost of fault-tolerant universal quantum computation. This work is a collaboration between the research groups of David Poulin, Robert Raussendorf, and Beni Yoshida from the Université de Sherbrooke, University of British Columbia and the Perimeter Institute, respectively. Results from this project will shed light on which order parameters of condensed matter systems are important for quantum information processing and quantum sensing, and how to assess and reduce the overhead requirements for fault-tolerant quantum computation via understanding the process of magic-state distillation.

Figure 1. (a) Heat plot for the non-classicality measure mana, for a single qutrit. The grey region is completely classical, and it contains the stabilizer polytope (with dashed boundary) as a strict subset. (b) The working of quantum computation in SPT phases rest on the presence of symmetry. Shown here is a symmetry that enables quantum computational wire, a computational primitive for computation.
Related Content

Distributing Multimode Entanglement with Microwave Photons
Microwaves have enabled numerous classical technologies, in part because they propagate through air with little energy loss.
March 6, 2017

Quantum Light Sources Based on Deterministic Photon Subtraction
Summary This project develops new sources of light that utilize quantum entanglement to enhance imaging resolution and detection. We aim to go beyond simple photon pairs and advance our understanding and control of new quantum states of light. Our approach uses deterministic single-photon subtraction (removing of a specific photon from a pulse of light) […]
July 13, 2018

Entangled States of Beams and their Applications
Summary With David Cory and collaborators at the National Institute of Standards and Technology (NIST) we explore how to engineer beams of neutron or photons that carry entanglement. The degrees of freedom that can be entangled include spin (polarization), momentum, displacement, and angular momentum. These have potential applications ranging from studies of helical internal magnetic fields […]
September 7, 2016

Developing Tools for Quantum Characterization and Validation
Summary Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]
October 3, 2017