Micro-supercapacitors (MCs) are miniaturized energy storage devices that can enhance the performance of wearable health devices, medical implants, wireless sensors, and micro-electromechanical systems due to their fast frequency response, long life cycle, and vast temperature operation. However, to make these MC systems into commercially feasible products, necessary improvements to current MC performance are necessary, primarily in increasing the energy density. Reducing the electrode materials’ dimension is the most effective approach to boost the performance of MCs. Graphene quantum dots (QDs) have already shown improved response over conventional MCs. This work aims to develop QDs from MXene, a class of layered transition metal carbides, carbonitrides or nitrides. These MXene QDs will increase the energy density of MCs by twofold and optimize their electrochemical performance for commercial viability. MXene of an optimized size for QDs will be produced using environmentally friendly etching methods. MXene QDs with different terminations will then be prepared and used as electrodes to fabricate MCs and to evaluate the capacitance and stability. Density Functional Theory (DFT) methods will be used to examine the physical properties of the materials and further understand the experimental results. The MCs that display the best performance will be assembled to study their characteristics further. The research will provide a green synthesis protocol of MXene and accelerate the discovery of optimized MXene QD materials. Moreover, the MXene QD MC devices will have increased energy storage performance and durability, ideally suited for the next generation of wearable health devices and clean energy storage.
Figure 1. Aiping Yu, Professor and University Research Chair. She is the recipient of the prestigious NSERC Steacie Fellowship and RSC Rutherford Medal, as well as listed in the 2022 World’s Top 2% Scientist database published by John Ioannidis at Stanford. Her research mainly focuses on 2D and carbon nanomaterials synthesis and surface tailoring for various applications, including supercapacitors, batteries, CO2 reduction, and polymer composites for EMI shielding and anti-corrosion.
Related Content

Combined momentum- and real-space photoelectric probes of dimensionality-tuned Weyl semimetals
Summary The library of two-dimensional (2D) materials has recently grown to include topological insulators and semimetals. Their incorporation in special device geometries may lead to novel quantum electronics with enhanced functionalities. Weyl semimetals, in particular, offer the most robust form of topological protection. Recent results from our group indicate that Weyl nodes should be […]
March 12, 2019

Silicon Platform for Electron Spin Qubits
Summary Scaling solid-state quantum processors to a useful threshold while maintaining the requisite precision in quantum control remains a challenge. We propose a quantum metal-oxide-semiconductor (QMOS) architecture operating at cryogenic temperatures that is based on a network/node approach as a means to scalability. By working with QMOS, we benefit from the deep investments and […]
December 7, 2018

Functionalized Nanodiamonds for Sensing Biochemical Processes
Summary Chemotherapy is limited by the failure to clinically monitor the efficacy of the treatment in real-time, which results in suboptimal chemotherapy being given for a prolonged period. Predicting the outcome of chemotherapy immediately after drug administration can increase diagnostic accuracy, efficacy outcomes, and successful treatment. Quantum nanodiamond sensors can be used as optical sensors […]
August 31, 2022