TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Mesoscopic systems as coherent control elements

    Go Back Back

    More Topics

    chemistry computation control entanglement grand challenge mesoscopic systems non-interacting qubits

    Summary 

    Mesoscopic systems provide a new tool for quantum systems design. In particular, they are enabling of robust quantum control. Here “mesoscopic system” refers to a connected network where each element, if studied alone, would be a quantum bit. The network is too big to be treated fully quantum mechanically. We do not have individual control over each element and we measure collective properties of the network. However, the network retains quantum coherence and behaves in a uniquely quantum fashion. In this project, we design a novel protocol using an intermediate mesoscopic system to control and interconnect non-interacting qubits. Our method aims to create entanglement between two separated qubits; a pure quantum correlation between the target qubits that provides a measure of the mesoscopic system’s quantum capacity. Over the course of this project, we will develop new theory and experimental tools. Ultimately, we expect our work will lead to innovative design elements for use in quantum processor architectures and quantum measurement devices.

    Figure 1: The summary of the entangling protocol: (a) The experimentally available control tools are used to correlate two joint logical states of the target with two very distinct collective states of the mesoscopic system, (b) A low-resolution global measurement over the mesoscopic system discerns between the distinct collective states of the mesoscopic system. This measurement updates the state of the qubits into one of the two logical joint states, each with a probability of ½, along with the state of the mesoscopic system. Both of these joint logical states are maximally entangled quantum states between the target qubits.

    Principal Investigator (PI) or Team Coordinator

    David Cory

    sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    QuantumIon: an open-access quantum computing platform

    Summary Trapped ions are one of the most advanced technologies for quantum computing, offering multi-qubit control in a universal quantum computing architecture and the ability to perform calculations with unprecedented precision. In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an […]

    September 9, 2019

    PI: Crystal Senko, Kazi Rajibul Islam

    Skip Tags barium benchmarking + 10 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to QuantumIon: an open-access quantum computing platform
    Metasurfaces for high-efficiency parametric downconversion and complex quantum state generation

    Metasurfaces for high-efficiency parametric downconversion and complex quantum state generation

    Summary  Entangled photon sources are crucial for quantum computing, quantum sensing, and quantum communication. Of growing importance are sources relying on spontaneous parametric downconversion (SPDC). Unfortunately, these sources of entangled photons are often constrained by momentum conservation laws. To overcome this limitation and expand the possibility of quantum state engineering, we intend to use metasurfaces […]

    February 1, 2023

    PI: Zbig Wasilewski

    Skip Tags entangled photons quantum processing + 1 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Metasurfaces for high-efficiency parametric downconversion and complex quantum state generation
    Combined momentum- and real-space photoelectric probes of dimensionality-tuned Weyl semimetals

    Combined momentum- and real-space photoelectric probes of dimensionality-tuned Weyl semimetals

    Summary   The library of two-dimensional (2D) materials has recently grown to include topological insulators and semimetals. Their incorporation in special device geometries may lead to novel quantum electronics with enhanced functionalities. Weyl semimetals, in particular, offer the most robust form of topological protection. Recent results from our group indicate that Weyl nodes should be […]

    March 12, 2019

    PI: Adam Wei Tsen

    Skip Tags 2d 3d + 13 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Combined momentum- and real-space photoelectric probes of dimensionality-tuned Weyl semimetals
    Quantum Information Processing with Molecular Lattices
    TQT Computation

    Quantum Information Processing with Molecular Lattices

    The aim of the work is to develop theoretical tools to simulate and predict the behaviour of a one-dimensional chain of trapped dipolar molecules and to study the nature of entanglement as a design resource.

    June 1, 2017

    PI: Pierre-Nicholas Roy

    Skip Tags chemistry computation + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Information Processing with Molecular Lattices

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo