TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Rydberg Atom Array Quantum Simulator

    Go Back Back

    More Topics

    atom arrays computation control grand challenge many-body materials new ideas physics Rydberg simulations

    Summary 

    Quantum simulators enable probing the static and dynamic properties of correlated quantum many-body systems that would otherwise be numerically inaccessible using classical simulators. We are developing quantum simulators based on arrays of neutral atoms excited to Rydberg states. Such Rydberg atom arrays are advantageous for simulating the dynamics of interacting spin systems (Ising spin models) in higher dimensions and arbitrary geometries. Our first simulator uses alkali atoms trapped in two-dimensional arrays of optical tweezers. It is currently being designed, built and operated by our team. It will be used for studying many-body quantum dynamics, non-equilibrium physics, and quantum chaos. We will explore these areas after optimizing our control gates and engineering interactions using coherent excitation to Rydberg states. We will also explore novel ideas presented by the early adopter community, such as approaches to gain better insight into advanced materials. Finally, as this project involves the development of novel quantum hardware, including an optimal control toolbox and advanced laser systems, it may lead to further application to quantum enhanced sensing and precision metrology.

     

    Figure 1. Classical simulation of the dynamics of a chain of five interacting atoms exhibiting coherent many-body oscillations after being adiabatically driven across a phase transition from a disordered state into an ordered state and suddenly quenched into a far-from-equilibrium state. Quantum simulators enable extending those simulation results into numerically inaccessible regimes for larger system sizes and higher dimensions.

    Principal Investigator (PI) or Team Coordinator

    Alexandre Cooper-Roy

    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Reliably operating noisy quantum computers
    TQT Computation

    Reliably operating noisy quantum computers

    Summary The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of […]

    January 22, 2020

    PI: Joel Wallman

    Skip Tags accuracy applied mathematics + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Reliably operating noisy quantum computers
    Photonic Quantum Processor
    TQT Computation

    Photonic Quantum Processor

    Photonic quantum processors based on integrated quantum photonic circuits require entangled photon pairs to perform quantum computations. However, current state-of-the-art technologies utilize probabilistic entangled photon sources with limited pair-extraction efficiencies, negatively affecting the computation speed. This project aims to boost the speed of on-chip quantum operations by using bright, on-demand entangled photon sources with an […]

    April 24, 2023

    PI: Michael Reimer

    Skip Tags computation entanglement + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Photonic Quantum Processor
    Novel Infrared Camera Based on Quantum Sensors for Biomedical Applications
    TQT Sensing

    Novel Infrared Camera Based on Quantum Sensors for Biomedical Applications

    Summary  In this project we develop a novel infrared camera with low noise and high detection efficiency for biomedical applications of optical coherence tomography (OCT) using quantum materials. OCT is a technique used to image the back of the eye and allow for the diagnosis of detrimental eye conditions, for e.g., macular degeneration, diabetic retinopathy […]

    March 13, 2019

    PI: Michael Reimer

    Skip Tags camera CMOS + 10 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Novel Infrared Camera Based on Quantum Sensors for Biomedical Applications
    Chiral Quantum Antenna Based on Multilayer Metasurface

    Chiral Quantum Antenna Based on Multilayer Metasurface

    Summary   Individual atoms can act as stationary qubits and thus serve as nodes in quantum computing networks or as memories for quantum repeaters. However, to successfully use qubits based on single atoms suspended in free space, photons emitted by a single atom need to be efficiently collected. Conventionally, this can be done with  high […]

    September 20, 2018

    PI: Michal Bajcsy

    Skip Tags electrical & computer engineering new ideas + 6 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Chiral Quantum Antenna Based on Multilayer Metasurface

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo