Summary
Thanks to the light-induced collective oscillations of free charges at the boundary between a conducting material and a dielectric, known as surface plasmon resonance, metallic nanostructures can exhibit strong light absorption and scattering. The sensitivity of these resonances to the local environment and shape of the metallic structures allows them to be used, for example, in chemical sensing and cancer therapy. Semiconductor and metal-oxide nanoparticles expand possible wavelengths of surface plasmon resonances into the infrared spectrum and can possibly allow for coupling of the surface plasmon resonances of the nanoparticle, which are of classical nature, to the particle’s semiconductor band structure, which arises from quantum states of the charge carriers. These charge carriers are the electron-hole pairs known as excitons in the semiconductor.
We have recently developed a new method to produce doped transparent-metal-oxide plasmonic nanocrystals and used these to demonstrate for the first time a plasmon-exciton coupling in any plasmonic semiconductor system. Our goal in this project is to further explore the plasmon-exciton coupling in semiconductor and metal-oxide nanostructures and to develop methods to use this coupling for plasmon control of the quantum states of single defects and for their entanglement. We expect this will open the door for these systems to be deployed in quantum sensing and computing applications. In particular, we believe our studies will lead to the design of inexpensive and highly sensitive magneto-optical sensors for thermal imaging and molecular sensing.
Related Content

Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network
Summary Large-scale, fault-tolerant quantum computation requires precise and stable control of individual qubits. This project will use complementary metal-oxide-semiconductor (CMOS) technology to provide a cost-effective scalable platform for reliable and high-density control infrastructure for silicon spin qubits. We will use sub-micron CMOS technology to address device and circuit-level challenges and explore the integration of […]
June 14, 2018

Quantum Information Processing with Molecular Lattices
The aim of the work is to develop theoretical tools to simulate and predict the behaviour of a one-dimensional chain of trapped dipolar molecules and to study the nature of entanglement as a design resource.
June 1, 2017

Novel High-Speed Receiver for Quantum Communication and Sensing
Summary An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all […]
January 1, 2019

A Reformulation of Quantum Game Theory
Summary Classical game theory – conducted at the interface between economics and computer science – has found applications in topics ranging from networking and security to online markets. Despite over 20 years of research into connections between game theory and quantum information, we have yet to see any significant implications of quantum information when applied […]
April 1, 2020