Summary
Thanks to the light-induced collective oscillations of free charges at the boundary between a conducting material and a dielectric, known as surface plasmon resonance, metallic nanostructures can exhibit strong light absorption and scattering. The sensitivity of these resonances to the local environment and shape of the metallic structures allows them to be used, for example, in chemical sensing and cancer therapy. Semiconductor and metal-oxide nanoparticles expand possible wavelengths of surface plasmon resonances into the infrared spectrum and can possibly allow for coupling of the surface plasmon resonances of the nanoparticle, which are of classical nature, to the particle’s semiconductor band structure, which arises from quantum states of the charge carriers. These charge carriers are the electron-hole pairs known as excitons in the semiconductor.
We have recently developed a new method to produce doped transparent-metal-oxide plasmonic nanocrystals and used these to demonstrate for the first time a plasmon-exciton coupling in any plasmonic semiconductor system. Our goal in this project is to further explore the plasmon-exciton coupling in semiconductor and metal-oxide nanostructures and to develop methods to use this coupling for plasmon control of the quantum states of single defects and for their entanglement. We expect this will open the door for these systems to be deployed in quantum sensing and computing applications. In particular, we believe our studies will lead to the design of inexpensive and highly sensitive magneto-optical sensors for thermal imaging and molecular sensing.
Related Content

Applications of Neutron Interferometry and Structured Neutron Beams
Summary Neutrons are a powerful probe of matter and physics due to their Angstrom size wavelengths, electric neutrality and relatively large mass. In this project, we develop quantum sensors that exploit these attributes to increases the precision of measurements of fundamental forces and materials structure. With David Cory, Alexander Cronin of the University of Arizona, […]
July 31, 2018

Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing
June 1, 2017

Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network
Summary Large-scale, fault-tolerant quantum computation requires precise and stable control of individual qubits. This project will use complementary metal-oxide-semiconductor (CMOS) technology to provide a cost-effective scalable platform for reliable and high-density control infrastructure for silicon spin qubits. We will use sub-micron CMOS technology to address device and circuit-level challenges and explore the integration of […]
June 14, 2018