Summary
Entangled photon sources are crucial for quantum computing, quantum sensing, and quantum communication. Of growing importance are sources relying on spontaneous parametric downconversion (SPDC). Unfortunately, these sources of entangled photons are often constrained by momentum conservation laws. To overcome this limitation and expand the possibility of quantum state engineering, we intend to use metasurfaces – a term that refers to periodic 2D arrays of nanoresonators with subwavelength dimensions and spacing – made of highly nonlinear optical materials, in which light-matter interactions can be engineered in novel ways. This project aims to optimize the generation efficiency of entangled photons using epitaxially grown metasurfaces. GaAs is commonly used to enable efficient photon pair generation. While current GaAs-based SPDC metasurfaces are fabricated using the GaAs(001) crystal orientation, the proposed project instead posits using a GaAs crystal orientation known as GaAs(111) that is more challenging to grow but can enhance the rate of photon pair generation by at least one order of magnitude and potentially as much as three orders of magnitude. The epitaxial growth of GaAs-based structures on GaAs(111) substrates will first be explored to optimize layer morphology at an atomic scale. The metasurface design will also be optimized using a deep neural network technique. In close feedback with the modeling, metasurfaces with different designs will be fabricated on the grown GaAs(111) layers. The nonlinear optical response of the metasurfaces will be measured to continue refining of the design, and the entangled photon pair generation correlation will be studied. These new quantum optical metasurfaces can potentially enable the creation of complex photon quantum states, including cluster states and multichannel single photons, that could facilitate compact quantum information processing and universal measurement-based quantum computation.
Related Content

Reliably operating noisy quantum computers
Summary The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of […]
January 22, 2020

Novel Infrared Camera Based on Quantum Sensors for Biomedical Applications
Summary In this project we develop a novel infrared camera with low noise and high detection efficiency for biomedical applications of optical coherence tomography (OCT) using quantum materials. OCT is a technique used to image the back of the eye and allow for the diagnosis of detrimental eye conditions, for e.g., macular degeneration, diabetic retinopathy […]
March 13, 2019

Combined momentum- and real-space photoelectric probes of dimensionality-tuned Weyl semimetals
Summary The library of two-dimensional (2D) materials has recently grown to include topological insulators and semimetals. Their incorporation in special device geometries may lead to novel quantum electronics with enhanced functionalities. Weyl semimetals, in particular, offer the most robust form of topological protection. Recent results from our group indicate that Weyl nodes should be […]
March 12, 2019

Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
Summary Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible, we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement […]
October 29, 2018