Click to go back to home
  • En
  • Fr
Get Connected
Click to go back to home
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

#simulator

Go Back Back
Go to Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
TQT Computation

Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator

Summary   In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]

December 8, 2018

PI: Na Young Kim

Skip Tags computation grand challenge + 7 Additional

  • Share on Twitter
  • Share on Facebook
  • Share on LinkedIn
  • Go to Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
Go to Engineering and Characterizing Programmable Interaction Graphs in a Trapped Ion Quantum Simulator
Engineering and Characterizing Programmable Interaction Graphs in a Trapped Ion Quantum Simulator
TQT Computation

Engineering and Characterizing Programmable Interaction Graphs in a Trapped Ion Quantum Simulator

Summary   Quantum simulators have the potential to bring unprecedented capabilities in areas such as the discovery of new materials and drugs. Engineering precise and programmable interaction graphs between qubits or spins forms the backbone of simulator applications. The trapped ion system is unique in that the interaction graph between qubits can be programmed, in […]

July 24, 2018

PI: Kazi Rajibul Islam

Skip Tags algorithms characterization + 6 Additional

  • Share on Twitter
  • Share on Facebook
  • Share on LinkedIn
  • Go to Engineering and Characterizing Programmable Interaction Graphs in a Trapped Ion Quantum Simulator
Go to Quantum Simulation of Strongly Coupled Field Theories
Quantum Simulation of Strongly Coupled Field Theories
TQT Computation

Quantum Simulation of Strongly Coupled Field Theories

Strongly-coupled field theories describe both fundamental and applied quantum problems.

August 10, 2017

PI: Chris Wilson

Skip Tags computation electrical & computer engineering + 3 Additional

  • Share on Twitter
  • Share on Facebook
  • Share on LinkedIn
  • Go to Quantum Simulation of Strongly Coupled Field Theories

Connect with Us

Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

Get Connected
TQT Logo
First Canada Logo
  • twitter icon
  • facebook icon
  • youtube icon
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing
TQT Logo
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing
  • twitter icon
  • facebook icon
  • youtube icon
First Canada Logo
TQT Logo
  • twitter icon
  • facebook icon
  • youtube icon
  • Research
  • Overview
  • Updates
  • Projects
  • Publications
  • Labs
  • Quantum Innovation Cycle
  • Opportunities
  • Overview
  • Quantum for Health Design Challenge
  • Quantum for Environment Design Challenge
  • Quantum Seed
  • Technology Development
  • Open Positions
  • Events
  • All Events
  • About
  • Overview
  • People
  • Media
  • Contact
First Canada Logo