Summary
Heavy metals are a major public health concern and their on-site detection in water supplies is not well served by existing lab techniques. We develop a new multi-modal platform comprising functionalized quantum dots of two-dimensional materials (2D-QDs) for the sensing of four highly-toxic heavy metal pollutants (arsenic, cadmium, lead and mercury). The zero-dimensional nature of quantum dots brings essential properties necessary for fluorescence-based chemical sensing of heavy metals in the field. We focus on one type of 2D material, molybdenum disulfide (MoS2), which is a direct band gap semiconductor when produced as a monolayer. To fabricate and functionalize the 2D-QDs, we expose flakes of MoS2 suspended in a solution to a pulsed laser. This technique allows us to simultaneously functionalize the 2D-QDs, so that they become sensitive to a specific pollutant metal, and control their fluorescence wavelength, so that 2D-QDs functionalized for different target metals will produce distinguishable optical signals. By combining multiple types of functionalized 2D-QDs into a single solution capable of simultaneously identifying various heavy metals, we expect to advance a range of applications that require a field-deployable solution. These include for example, rapid contaminant point source identification, and water analysis of heavy metals in developing countries where conventional equipment is too costly.

Figure 1. Functionalized quantum dots of a 2D material are being developed for fluorescence-based chemical sensing of toxic heavy metal pollutants.
Related Content

Next Generation Quantum Sensors
We are developing new semiconductor p-n junctions and designing novel nanowire arrays that have the potential to significantly enhance the ability to detect light at the single photon level over an unprecedented wavelength range from the ultraviolet to infrared.
June 1, 2017
Advanced microwave electronics enabling quantum technologies
Summary Superconducting quantum computers require quantum-limited measurements at microwave frequencies in order to implement error correction. Conventionally, this is accomplished using near quantum-limited Josephson Parametric Amplifiers (JPAs). The JPAs require bulky ferrite-based circulators that prevent on-chip integration of the amplifiers with the processor and take up the majority of space and cooling power in the […]
April 1, 2020

Developing Tools for Quantum Characterization and Validation
Summary Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]
October 3, 2017

Silicon Platform for Electron Spin Qubits
Summary Scaling solid-state quantum processors to a useful threshold while maintaining the requisite precision in quantum control remains a challenge. We propose a quantum metal-oxide-semiconductor (QMOS) architecture operating at cryogenic temperatures that is based on a network/node approach as a means to scalability. By working with QMOS, we benefit from the deep investments and […]
December 7, 2018