Summary
Heavy metals are a major public health concern and their on-site detection in water supplies is not well served by existing lab techniques. We develop a new multi-modal platform comprising functionalized quantum dots of two-dimensional materials (2D-QDs) for the sensing of four highly-toxic heavy metal pollutants (arsenic, cadmium, lead and mercury). The zero-dimensional nature of quantum dots brings essential properties necessary for fluorescence-based chemical sensing of heavy metals in the field. We focus on one type of 2D material, molybdenum disulfide (MoS2), which is a direct band gap semiconductor when produced as a monolayer. To fabricate and functionalize the 2D-QDs, we expose flakes of MoS2 suspended in a solution to a pulsed laser. This technique allows us to simultaneously functionalize the 2D-QDs, so that they become sensitive to a specific pollutant metal, and control their fluorescence wavelength, so that 2D-QDs functionalized for different target metals will produce distinguishable optical signals. By combining multiple types of functionalized 2D-QDs into a single solution capable of simultaneously identifying various heavy metals, we expect to advance a range of applications that require a field-deployable solution. These include for example, rapid contaminant point source identification, and water analysis of heavy metals in developing countries where conventional equipment is too costly.

Figure 1. Functionalized quantum dots of a 2D material are being developed for fluorescence-based chemical sensing of toxic heavy metal pollutants.
Related Content
Line-Scanning optical coherence tomography system for in-vivo, non-invasive imaging of the cellular structure and blood perfusion of biological tissue
Summary Optical coherence tomography (OCT) is an optical imaging method that allows for in-vivo, non-invasive imaging of the structure and vasculature of biological tissue. Commercially available, clinical OCT systems utilize point-scanning method to acquire volumetric images over a large surface with typical frame rates of ~ 30 frames/ second. Since living biological tissue is constantly […]
August 27, 2019
Fabrication of Ultra Low Noise RF SQUID Amplifiers
A superconducting quantum interference device (SQUID) is an extremely sensitive magnetic field detector.
June 1, 2017

Novel High-Speed Receiver for Quantum Communication and Sensing
Summary An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all […]
January 1, 2019

Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
Summary Atomically thin 2D materials constitute promising building blocks for quantum devices due to their exotic, layer-dependent electronic properties. The ability to stack these materials in alternating layers enables heterostructures to be built in almost limitless combinations and over small enough length scales to observe quantum phenomena. So far though, practical implementation of devices based […]
April 1, 2020