TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Tuning Spin-Exchange Interactions in Low-Dimensional Metal Halide Perovskites: A New Class of Semiconductor Quantum Materials

    Go Back Back

    More Topics

    charge chemistry computation degrees of freedom DMS electronic magnetic materials metal halide nanostructure perovskite polarization quantum information processing seed fund semiconductor solid-state solotronics spin spintronics tunable

    Summary 

    Leakage current in electronic components is one of the limiting factors for the performance of conventional computers which use charges and currents as physical information carriers. Spintronics offers an alternative by using electron spin for information transfer, processing and storage, enabling the design of non-volatile computer memory and more energy-efficient electronic devices. In this project, we develop a new class of low-dimensional quantum materials for spintronics applications, which are based on colloidal metal halide perovskite semiconductor nanostructures. We explore the control of spin polarization in these systems based on magnetic exchange interactions between dopant centers and the nanocrystal charge carriers. A particular focus is on tuning spin exchange interactions by the selection of dopants and the ability to compositionally modulate nanocrystal band structure. Beyond spintronics, our results on spin interactions in metal halide perovskite nanostructures could open a new field of material research and ultimately result in new approaches to quantum information processing.

    Figure 1. Typical band splitting and carrier polarization in magnetic semiconductors.

    Principal Investigator (PI) or Team Coordinator

    Pavle Radovanovic

    sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Spin-transfer Torque Magnetic Random Access Memory for On-chip Spin Information Storage

    Summary   Leakage power in semiconductor memories, such as Dynamic Random Access Memory (DRAM) and Static Random Access Memory (SRAM), can be substantial and is one of the limits for scalability of classical electronics. This is attributed to the fact that the information stored is volatile, requiring constant refreshing, as well as reprogramming upon powering […]

    August 6, 2018

    PI: Guo-Xing Miao, Manoj Sachdev

    Skip Tags CMOS electrical & computer engineering + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Spin-transfer Torque Magnetic Random Access Memory for On-chip Spin Information Storage
    Development of Terahertz Polariton Lasers

    Development of Terahertz Polariton Lasers

    Theoretical and experimental results show that the polariton lasing mechanism is a promising basis for a compact, efficient source of terahertz radiation.

    July 1, 2017

    PI: Zbigniew Wasilewski

    Skip Tags electrical & computer engineering new ideas + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Development of Terahertz Polariton Lasers
    Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
    TQT Computation

    Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator

    Summary   In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]

    December 8, 2018

    PI: Na Young Kim

    Skip Tags computation grand challenge + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
    Harnessing the Promise of Quantum Materials for Future Electronic Devices

    Harnessing the Promise of Quantum Materials for Future Electronic Devices

    Summary   Two-dimensional (2D) quantum materials, such as graphene and molybdenum disulfide, have great potential for use in future flexible and wearable electronics applications. With traditional silicon-based electronics nearing their theoretical performance limits, nano-electronics made from 2D quantum materials offer breakthrough opportunities for energy-efficient, wearable ubiquitous computation. In this project, we will study integration of […]

    June 14, 2018

    PI: Young Ki Yoon

    Skip Tags 2d electrical & computer engineering + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Harnessing the Promise of Quantum Materials for Future Electronic Devices

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo