TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Scanning Tunneling Microscopy of Quantum Materials, Devices and Molecules

    Go Back Back

    More Topics

    0d 1d 2d characterization devices grand challenge materials molecules new ideas sensors spintronics STM storage transistor transport

    Summary

     

    This project advances our ability to characterize and study novel quantum materials, quantum devices, and even individual molecules at the atomic level. By combining Non-Contact Atomic Force Microscopy (NC-AFM), Scanning Tunneling Microscopy (STM) and scanning gate methods, we correlate spatial information with transport properties and can locally manipulate charge, spin and structural states. This opens a unique and useful window on the physics of 2D materials, 1D systems such as carbon nanotubes and 0D objects like quantum dots and molecules. We will collaborate with Adam Wei Tsen’s group to study surface electronic transport properties of 2D materials and correlate these with their bulk transport characteristics. We will also apply STM and Scanning Tunneling Spectroscopy (STS) to achieve atomic-scale resolution imaging of single molecules in collaboration with David Cory’s group. We expect this project will create a unique capability to probe and manipulate matter at the atomic scale, leading to accelerated development of novel transistors and spintronic devices, quantum sensors, ultra-high density classical and quantum information storage, and novel qubit applications.

     

    Figure 1. Topographic image of exfoliated 1T-TaS2 at 77 K (scale bar = 20 nm) obtained in the scanning tunneling microscope. The colour scale is in picometers. The periodic structure resolved in the main image is a charge density wave known to occur in this material. Inset: magnified image showing both the charge density wave and the underlying atomic lattice (scale bar = 1.4 nm).

    Principal Investigator (PI) or Team Coordinator

    Jonathan Baugh

    sidebar icon sidebar icon sidebar icon sidebar icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Silicon Platform for Electron Spin Qubits
    TQT Computation

    Silicon Platform for Electron Spin Qubits

    Summary   Scaling solid-state quantum processors to a useful threshold while maintaining the requisite precision in quantum control remains a challenge. We propose a quantum metal-oxide-semiconductor (QMOS) architecture operating at cryogenic temperatures that is based on a network/node approach as a means to scalability. By working with QMOS, we benefit from the deep investments and […]

    December 7, 2018

    PI: Jonathan Baugh

    Skip Tags chemistry computation + 13 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Silicon Platform for Electron Spin Qubits
    Molecular Scale Magnetic Resonance Imaging
    TQT Sensing

    Molecular Scale Magnetic Resonance Imaging

    Through its phenomenal ability to image soft tissues, magnetic resonance imaging (MRI) has revolutionized both clinical medicine and research biomedicine.

    September 9, 2016

    PI: Raffi Budakian

    Skip Tags grand challenge imaging device + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Molecular Scale Magnetic Resonance Imaging

    QuantumIon: an open-access quantum computing platform

    Summary Trapped ions are one of the most advanced technologies for quantum computing, offering multi-qubit control in a universal quantum computing architecture and the ability to perform calculations with unprecedented precision. In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an […]

    September 9, 2019

    PI: Crystal Senko, Kazi Rajibul Islam

    Skip Tags barium benchmarking + 10 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to QuantumIon: an open-access quantum computing platform
    Chiral Quantum Antenna Based on Multilayer Metasurface

    Chiral Quantum Antenna Based on Multilayer Metasurface

    Summary   Individual atoms can act as stationary qubits and thus serve as nodes in quantum computing networks or as memories for quantum repeaters. However, to successfully use qubits based on single atoms suspended in free space, photons emitted by a single atom need to be efficiently collected. Conventionally, this can be done with  high […]

    September 20, 2018

    PI: Michal Bajcsy

    Skip Tags electrical & computer engineering new ideas + 6 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Chiral Quantum Antenna Based on Multilayer Metasurface

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo