Summary
Trapped ions are one of the most advanced technologies for quantum computing, offering multi-qubit control in a universal quantum computing architecture and the ability to perform calculations with unprecedented precision. In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an advanced quantum computing platform, thereby accelerating the discovery of new methods and applications of quantum computing.To this end, we build appropriate control electronics, test the suitability of our chosen barium isotope for multi-qubit operations, and construct a 10-qubit processor and benchmark its performance in collaboration with Joseph Emerson. We then demonstrate quantum algorithms from a variety of applications areas: quantum simulation by Rajibul Islam in collaboration with Christine Muschik, quantum error correction in collaboration with Raymond Laflamme, and characterization of multi-level qudits by Crystal Senko in collaboration with Joseph Emerson and Joel Wallman. The QuantumIon will make trapped ion hardware more automated and accessible to users, opening up a range of new experiments from quantum optics to multi-level qudit manipulation to quantum error correction.
Related Content
Fabrication of Ultra Low Noise RF SQUID Amplifiers
A superconducting quantum interference device (SQUID) is an extremely sensitive magnetic field detector.
June 1, 2017
Novel High-Speed Receiver for Quantum Communication and Sensing
Summary An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all […]
January 1, 2019
Extensible Technology for a Medium-Scale Superconducting Quantum Processor
Summary Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach […]
November 28, 2016