TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Portable Quantum Dot Measurement System

    Go Back Back

    More Topics

    chemistry design detection devices fluorescence heavy metals portable quantum dots quantum sensor sensor

    Summary

    Detecting heavy metals in water is essential to ensure clean drinking water and appropriate regulatory decisions following an accident (e.g., a spill) or an emergency. Traditionally, high-sensitivity detection of heavy metals requires bulky and costly (to purchase and operate) lab-based instruments. We propose developing a palm-sized, element-specific, highly-sensitive, battery-operated, smartphone-controlled system for on-site measurement to provide timely heavy metal concentration information. Two-dimensional quantum dots (2D-QDs) will be modified by adding molecular components specific to a heavy metal of interest; the interaction between the heavy metal and the chosen molecular component will result in visible fluorescence that can be measured. A high-sensitivity instrument will be developed around a battery-operated, portable microplasma, which will serve as a light source, and a battery-operated photo-detector. For measurement, modified 2D-QDs will be added to a contaminated water sample inside a cuvette placed in the instrument. When excited by the light emitted by the microplasma, the resultant fluorescence will indicate the presence and concentration of heavy metals in the water sample. Further, data acquisition electronics will be embedded in the instrument and a smartphone can be used to receive the digital data wirelessly. The development of this sensor can significantly improve the monitoring of heavy metals in waters in Canada and worldwide.

    Figure 1. (Left) A concept diagram of the proposed instrumentation consisting of the light source, a cuvette with a water sample and a detector. (Right) The proposed fluorescence-measurement system will be palm-sized, battery operated and controlled by a smartphone.

     

    Principal Investigator (PI) or Team Coordinator

    Vassili Karanassios

    sidebar icon sidebar icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    On-Chip Microwave-Optical Quantum Interface
    TQT Communication

    On-Chip Microwave-Optical Quantum Interface

    Summary   In this project we develop a quantum interface between microwave and optical photons as a key enabling technology of a hybrid quantum network. In such a network, the robust optical photons carry quantum information through optical fibres over long distances, while superconducting microwave circuits protected from thermal photon noise by the low temperature […]

    October 29, 2018

    PI: Michal Bajcsy & Chris Wilson

    Skip Tags communication detector + 11 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to On-Chip Microwave-Optical Quantum Interface
    Metasurfaces for high-efficiency parametric downconversion and complex quantum state generation

    Metasurfaces for high-efficiency parametric downconversion and complex quantum state generation

    Summary  Entangled photon sources are crucial for quantum computing, quantum sensing, and quantum communication. Of growing importance are sources relying on spontaneous parametric downconversion (SPDC). Unfortunately, these sources of entangled photons are often constrained by momentum conservation laws. To overcome this limitation and expand the possibility of quantum state engineering, we intend to use metasurfaces […]

    February 1, 2023

    PI: Zbig Wasilewski

    Skip Tags entangled photons quantum processing + 1 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Metasurfaces for high-efficiency parametric downconversion and complex quantum state generation
    Entangled Photon Orbital Angular Momentum Arrays
    TQT Communication

    Entangled Photon Orbital Angular Momentum Arrays

    Summary Arrays of orbital angular momentum (OAM) states of light are a new form of structured light so far relatively unexplored in quantum information science. Unlike spin angular momentum of light, which is related to light’s polarization and covers two dimensions, OAM states, sometimes described as ‘donut beams’ due to the shape of the field […]

    September 19, 2019

    PI: Kevin Resch

    Skip Tags communication degrees of freedom + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Entangled Photon Orbital Angular Momentum Arrays
    Composite Superconductors for Improved Quantum Coherence
    TQT Computation

    Composite Superconductors for Improved Quantum Coherence

    Summary   Conventional superconductors have trouble performing well in magnetic fields required for electron spin resonance (ESR) – based quantum information processing applications. We can, however, use proximity engineering to select desired properties from different materials and combine them for improved superconducting performance in magnetic fields — an improvement that would have strong implications for […]

    December 12, 2018

    PI: Guo-Xing Miao

    Skip Tags computation ESR + 6 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Composite Superconductors for Improved Quantum Coherence

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo