TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Molecular Scale Magnetic Resonance Imaging

    Go Back Back

    More Topics

    grand challenge imaging device physics & astronomy sensing

    Summary

     

    Through its phenomenal ability to image soft tissues, magnetic resonance imaging (MRI) has revolutionized both clinical medicine and research biomedicine. Nowadays, MRI scanners used clinically have spatial resolutions in the range of 0.5 mm. This enables identification and monitoring of disease processes throughout the body and visualization of minute brain structures. Magnetic resonance microscopy (MRM) brings the resolution down to the micron scale, so that cells and parts of cells can be seen. Using ultrasensitive silicon nano-wired mechanical resonators, we are working to distinguish small ensembles of nuclear and electron spins. In doing so, we are striving to bring MR down to the nanometer scale, allowing imaging of single viral particles. Subsequently, extending the approach to the Angstrom scale, our goal is to demonstrate MR imaging of individual protein molecules.

     

    Principal Investigator (PI) or Team Coordinator

    Raffi Budakian

    sidebar icon sidebar icon sidebar icon
    Group sensing icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Quantum Sensing with Small Quantum Systems
    TQT Sensing

    Quantum Sensing with Small Quantum Systems

    Summary   There are small quantum systems over which we have very good control and which have long lifetimes. Examples include the phosphorous (P) defect in silicon (Si) and the nitrogen vacancy (NV) defect in diamond. With P defect in Si, we focus on improving our understanding of the hyperpolarization mechanism to better enable engineering of […]

    December 1, 2016

    PI: David Cory

    Skip Tags chemistry grand challenge + 6 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Sensing with Small Quantum Systems
    Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements

    Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements

    Summary  Magnetoelectric multiferroics are materials that exhibit correlated ferroelectric and ferromagnetic properties (i.e., a magnetoelectric effect). The resulting ability of these materials to simultaneously store data in electric polarization and magnetic moment could increase data storage density and data processing speed while reducing energy consumption. This project aims to design and fabricate new composite multiferroic […]

    February 1, 2023

    PI: Pavle Radovanovic

    Skip Tags magnetic

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements
    Building Blocks for Quantum Neuromorphic Computing: Superconducting Quantum Memcapacitors
    TQT Computation

    Building Blocks for Quantum Neuromorphic Computing: Superconducting Quantum Memcapacitors

    Quantum neuromorphic computing (QNC) is a novel method that combines quantum computing with brain-inspired neuromorphic computing. Neuromorphic computing performs computations using a complex ensemble of artificial neurons and synapses (i.e., electrical circuits) to emulate the human brain. QNC may lead to a quantum advantage by realizing these components with quantum memory elements, or memelements, which […]

    June 12, 2023

    PI: Matteo Mariantoni

    Skip Tags computation entanglement + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Building Blocks for Quantum Neuromorphic Computing: Superconducting Quantum Memcapacitors
    Two-Dimensional Quantum Materials and Heterostructures
    TQT Computation

    Two-Dimensional Quantum Materials and Heterostructures

    Two-dimensional (2D) layers just one atom thick can be stripped from certain materials, such as graphene.

    June 1, 2017

    PI: Adam Wei Tsen

    Skip Tags 2d chemistry + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Two-Dimensional Quantum Materials and Heterostructures

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo