Summary
Optical coherence tomography (OCT) is an optical imaging method that allows for in-vivo, non-invasive imaging of the structure and vasculature of biological tissue. Commercially available, clinical OCT systems utilize point-scanning method to acquire volumetric images over a large surface with typical frame rates of ~ 30 frames/ second. Since living biological tissue is constantly moving due to breathing, heart rate, muscle twitch, etc., OCT images acquired with the point-scanning method are compromised by motion-related image artefacts. In this project, we propose to build an ultra-fast OCT system based on a line-scanning method, capable of resolving this issue. By combining high resolution (<2-micron) with high imaging speed (2,500 frames / second), the line-scanning OCT technology will be able to generate in-vivo and non-invasively volumetric images of biological tissue down to the sub-cellular level; map in 3D the blood vasculature and measure precisely the blood flow; and measure the functional response of neural tissues to external stimuli. We plan to use the new OCT system to image the healthy and pathological human cornea and limbus, with the ultimate the goal of improving early diagnostics and monitoring of the effectiveness of treatment of potentially blinding corneal and limbal diseases.
Related Content
Spin-transfer Torque Magnetic Random Access Memory for On-chip Spin Information Storage
Summary Leakage power in semiconductor memories, such as Dynamic Random Access Memory (DRAM) and Static Random Access Memory (SRAM), can be substantial and is one of the limits for scalability of classical electronics. This is attributed to the fact that the information stored is volatile, requiring constant refreshing, as well as reprogramming upon powering […]
August 6, 2018

Two-Dimensional Quantum Materials and Heterostructures
Two-dimensional (2D) layers just one atom thick can be stripped from certain materials, such as graphene.
June 1, 2017

Quantum State Tomography with Machine Learning
Summary An important challenge in building a quantum computer is quantifying the level of control obtained in the preparation of a quantum state. The state of a quantum device is characterized from experimental measurements, using a procedure known as tomography. Exact tomography requires a vast amount of computer resources, making it prohibitive for quantum […]
June 6, 2018