Summary
Optical coherence tomography (OCT) is an optical imaging method that allows for in-vivo, non-invasive imaging of the structure and vasculature of biological tissue. Commercially available, clinical OCT systems utilize point-scanning method to acquire volumetric images over a large surface with typical frame rates of ~ 30 frames/ second. Since living biological tissue is constantly moving due to breathing, heart rate, muscle twitch, etc., OCT images acquired with the point-scanning method are compromised by motion-related image artefacts. In this project, we propose to build an ultra-fast OCT system based on a line-scanning method, capable of resolving this issue. By combining high resolution (<2-micron) with high imaging speed (2,500 frames / second), the line-scanning OCT technology will be able to generate in-vivo and non-invasively volumetric images of biological tissue down to the sub-cellular level; map in 3D the blood vasculature and measure precisely the blood flow; and measure the functional response of neural tissues to external stimuli. We plan to use the new OCT system to image the healthy and pathological human cornea and limbus, with the ultimate the goal of improving early diagnostics and monitoring of the effectiveness of treatment of potentially blinding corneal and limbal diseases.
Related Content
Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
Summary Atomically thin 2D materials constitute promising building blocks for quantum devices due to their exotic, layer-dependent electronic properties. The ability to stack these materials in alternating layers enables heterostructures to be built in almost limitless combinations and over small enough length scales to observe quantum phenomena. So far though, practical implementation of devices based […]
April 1, 2020
Quantum Material Multilayer Photonic Devices and Network
Summary Realizing highly integrated quantum photonic devices on a chip can enable new opportunities for photonic quantum computation. In this project, we explore heterostructures of stacked two-dimensional (2D) materials, such transition metal dichalcogenides (TMDC) or graphene, combined with optical microcavities as a platform for such devices. 2D materials are extremely thin and flexible, and have […]
December 12, 2019
Using Interactive Digital Storytelling to Represent Transformative Quantum Technologies in Augmented/Extended Reality Environments
Summary A major roadblock to the broader adoption of quantum technologies is the long learning curve associated with their seemingly abstract concepts. This often renders quantum technologies inaccessible to most audiences, especially through explanations using conventional scientific language. In this project, we develop novel methods of interactive digital storytelling – augmented and extended reality (AR/XR) […]
February 24, 2021
Next Generation Quantum Sensors
We are developing new semiconductor p-n junctions and designing novel nanowire arrays that have the potential to significantly enhance the ability to detect light at the single photon level over an unprecedented wavelength range from the ultraviolet to infrared.
June 1, 2017