TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions

    Go Back Back

    More Topics

    benchmarking computation grand challenge multi-level physics & astronomy qudits scalability tomography trapped ions

    Summary

     

    The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. In this project we seek to improve the capabilities of trapped ion quantum processors, implementing all of the basic tools required to perform quantum information processing with multi-level qudits. To-date there have been few experimental efforts directed towards this area and many of the basic operations – such as reliably distinguishing among all possible basis states in a single-shot measurement or performing deterministic entangling gates – have not yet been demonstrated. In this project, we will design and construct a laser system that will be used to perform coherent operations, and to implement and characterize high-fidelity single-qudit gates. These will form some of the world’s first laboratory demonstrations of quantum computing with multi-level qudits. Because our approach will allow more information to be encoded with fewer qudits, and folds some of the complexity of a given algorithm into the non-entangling operations, there is reason to believe that the use of multi-level qudits could bring dramatic improvements to the scalability of quantum processors.

    Principal Investigator (PI) or Team Coordinator

    Crystal Senko

    sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Silicon Platform for Electron Spin Qubits
    TQT Computation

    Silicon Platform for Electron Spin Qubits

    Summary   Scaling solid-state quantum processors to a useful threshold while maintaining the requisite precision in quantum control remains a challenge. We propose a quantum metal-oxide-semiconductor (QMOS) architecture operating at cryogenic temperatures that is based on a network/node approach as a means to scalability. By working with QMOS, we benefit from the deep investments and […]

    December 7, 2018

    PI: Jonathan Baugh

    Skip Tags chemistry computation + 13 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Silicon Platform for Electron Spin Qubits
    Development of Terahertz Polariton Lasers

    Development of Terahertz Polariton Lasers

    Theoretical and experimental results show that the polariton lasing mechanism is a promising basis for a compact, efficient source of terahertz radiation.

    July 1, 2017

    PI: Zbigniew Wasilewski

    Skip Tags electrical & computer engineering new ideas + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Development of Terahertz Polariton Lasers
    Next Generation Quantum Sensors
    TQT Sensing

    Next Generation Quantum Sensors

    We are developing new semiconductor p-n junctions and designing novel nanowire arrays that have the potential to significantly enhance the ability to detect light at the single photon level over an unprecedented wavelength range from the ultraviolet to infrared.

    June 1, 2017

    PI: Michael Reimer

    Skip Tags electrical & computer engineering seed fund + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Next Generation Quantum Sensors
    Quantum Sensing with Small Quantum Systems
    TQT Sensing

    Quantum Sensing with Small Quantum Systems

    Summary   There are small quantum systems over which we have very good control and which have long lifetimes. Examples include the phosphorous (P) defect in silicon (Si) and the nitrogen vacancy (NV) defect in diamond. With P defect in Si, we focus on improving our understanding of the hyperpolarization mechanism to better enable engineering of […]

    December 1, 2016

    PI: David Cory

    Skip Tags chemistry grand challenge + 6 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Sensing with Small Quantum Systems

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo