Summary
The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. In this project we seek to improve the capabilities of trapped ion quantum processors, implementing all of the basic tools required to perform quantum information processing with multi-level qudits. To-date there have been few experimental efforts directed towards this area and many of the basic operations – such as reliably distinguishing among all possible basis states in a single-shot measurement or performing deterministic entangling gates – have not yet been demonstrated. In this project, we will design and construct a laser system that will be used to perform coherent operations, and to implement and characterize high-fidelity single-qudit gates. These will form some of the world’s first laboratory demonstrations of quantum computing with multi-level qudits. Because our approach will allow more information to be encoded with fewer qudits, and folds some of the complexity of a given algorithm into the non-entangling operations, there is reason to believe that the use of multi-level qudits could bring dramatic improvements to the scalability of quantum processors.
Related Content
![Portable Quantum Dot Measurement System](https://tqt.uwaterloo.ca/wp-content/uploads/2022/07/VK_Image.png)
Portable Quantum Dot Measurement System
Summary Detecting heavy metals in water is essential to ensure clean drinking water and appropriate regulatory decisions following an accident (e.g., a spill) or an emergency. Traditionally, high-sensitivity detection of heavy metals requires bulky and costly (to purchase and operate) lab-based instruments. We propose developing a palm-sized, element-specific, highly-sensitive, battery-operated, smartphone-controlled system for on-site measurement […]
July 21, 2022
![Composite Superconductors for Improved Quantum Coherence](https://tqt.uwaterloo.ca/wp-content/uploads/2019/01/Figure.jpg)
Composite Superconductors for Improved Quantum Coherence
Summary Conventional superconductors have trouble performing well in magnetic fields required for electron spin resonance (ESR) – based quantum information processing applications. We can, however, use proximity engineering to select desired properties from different materials and combine them for improved superconducting performance in magnetic fields — an improvement that would have strong implications for […]
December 12, 2018
Novel Superconducting Qubits for Error-Corrected Processors
Summary In this project, we develop novel superconducting qubits for error-corrected processors to enable large-scale quantum computing. Our design efforts will specifically target error-corrected architectures through a variety of paths. Possible features will include built-in parity measurements and the use of bosonic codes, such as Fock state and Cat codes, as our starting focus. Early […]
June 26, 2019
![Functionalized Nanodiamonds for Sensing Biochemical Processes](https://tqt.uwaterloo.ca/wp-content/uploads/2022/08/NVND-Casp3.jpg)
Functionalized Nanodiamonds for Sensing Biochemical Processes
Summary Chemotherapy is limited by the failure to clinically monitor the efficacy of the treatment in real-time, which results in suboptimal chemotherapy being given for a prolonged period. Predicting the outcome of chemotherapy immediately after drug administration can increase diagnostic accuracy, efficacy outcomes, and successful treatment. Quantum nanodiamond sensors can be used as optical sensors […]
August 31, 2022