Summary
A superconducting quantum interference device (SQUID) is an extremely sensitive magnetic field detector. Microstrip SQUIDs can amplify weak radio frequency (RF) signals, a capability that makes them attractive as a potential alternative to the cryogenic semiconductor-based RF amplifiers that are available commercially, but at a cost of approximately $6,000 each. The challenge of using microstrip SQUIDs has been that they are static sensitive and can be overwhelmed by external noise. By tweaking microstrip SQUID design to achieve the quantum noise limit, and by packaging the technology into a more practical configuration, our team is working to reduce the cost of the SQUID approach by an order of magnitude. We also are working toward a much higher performance amplifier, with voltage noise reduced ten fold.
In the course of our work, we expect to fabricate “user-friendly” SQUIDs – packaging the RF filtering, RF-SQUID, and amplification together – such that a non-specialist could easily run the amplifier with the ease of running a conventional semiconductor amplifier. In addition to producing a practical, high-performance and economical amplifier, we believe that our work will facilitate multiple new quantum readout applications, as well as interesting fundamental physics.
Related Content

Chiral Quantum Antenna Based on Multilayer Metasurface
Summary Individual atoms can act as stationary qubits and thus serve as nodes in quantum computing networks or as memories for quantum repeaters. However, to successfully use qubits based on single atoms suspended in free space, photons emitted by a single atom need to be efficiently collected. Conventionally, this can be done with high […]
September 20, 2018

Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
Summary Atomically thin 2D materials constitute promising building blocks for quantum devices due to their exotic, layer-dependent electronic properties. The ability to stack these materials in alternating layers enables heterostructures to be built in almost limitless combinations and over small enough length scales to observe quantum phenomena. So far though, practical implementation of devices based […]
April 1, 2020

Applications of Neutron Interferometry and Structured Neutron Beams
Summary Neutrons are a powerful probe of matter and physics due to their Angstrom size wavelengths, electric neutrality and relatively large mass. In this project, we develop quantum sensors that exploit these attributes to increases the precision of measurements of fundamental forces and materials structure. With David Cory, Alexander Cronin of the University of Arizona, […]
July 31, 2018

Quantum State Tomography with Machine Learning
Summary An important challenge in building a quantum computer is quantifying the level of control obtained in the preparation of a quantum state. The state of a quantum device is characterized from experimental measurements, using a procedure known as tomography. Exact tomography requires a vast amount of computer resources, making it prohibitive for quantum […]
June 6, 2018