Summary
An efficient source of terahertz radiation has the potential to improve characterization methods for drugs, proteins and bacteria, enable ultra-fast wireless data transfer over short distances for use in “smart factories”, and offer enhanced detection capabilities with the ability to see through packaging. However, terahertz light is particularly difficult to produce, and existing sources remain too bulky and power-hungry for widespread application.
We are working to develop more compact and efficient terahertz light sources using polaritons – hybrid particles consisting of a photon coupled strongly with a material excitation. This approach utilizes a plethora of quantum phenomena, from trapped photons, to quasiparticles, to Bose-Einstein condensation. By exploiting these unconventional effects we hope to pave the way towards a long-awaited practical source of terahertz light.
Related Content

Extensible Technology for a Medium-Scale Superconducting Quantum Processor
Summary Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach […]
November 28, 2016

Entangled Photon Orbital Angular Momentum Arrays
Summary Arrays of orbital angular momentum (OAM) states of light are a new form of structured light so far relatively unexplored in quantum information science. Unlike spin angular momentum of light, which is related to light’s polarization and covers two dimensions, OAM states, sometimes described as ‘donut beams’ due to the shape of the field […]
September 19, 2019

Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
Summary In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]
December 8, 2018
Quantum Sensing Applications using Quantum Communication Technology
Summary The Quantum Encryption and Science Satellite provides a platform to develop and deploy quantum sensing and metrology via photonic channels. This project will build upon ‘free-space’ quantum communication technology and explore new approaches and methods to advance two primary applications: quantum-enhanced telescopes, and spectroscopic sensing for methane detection in the atmosphere. For the […]
December 8, 2018