Summary
An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all times – such as links to hand-held devices or aircraft – polarization encoding leads to increased error. For these situations, time-bin encoding offers a promising robust solution. In this approach, time photon represents ‘0’ or ‘1’ depending on its detection in one of two time windows. Just like in the case of polarization encoding, where a photon can be in a superposition of vertical and horizontal polarization, a time-bin encoded photon can be in a superposition of being in the first and the second time window. Additionaly, quantum signals can be relatively easily converted between being polarization and time-bin encoded.
In this project, we jointly develop a quantum receiver with short time delay and high timing resolution that is optimized to handle time-bin encoded quantum signals. By combining our team’s expertise in free-space quantum receivers with a new detector array technology developed by Dr. Serge Charlebois and Jean-Francois Pratte of the University of Sherbrooke and by introducing new capabilities for integrated free-space time-bin encoding with high timing resolution detection, we expect to achieve state-of-the-art performance for quantum signal receiver technology. Such high-speed devices will open new doors for a variety of applications including daylight and continuous variable quantum key distribution, quantum sensing, imaging and LIDAR, and fundamental science tests.

Figure 1. The above animation shows the interference variation of the intensity on the single-photon camera. See details in (S. Sajeed et al, 2021)
Related Content

Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
Summary In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]
December 8, 2018
QuantumIon: an open-access quantum computing platform
Summary Trapped ions are one of the most advanced technologies for quantum computing, offering multi-qubit control in a universal quantum computing architecture and the ability to perform calculations with unprecedented precision. In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an […]
September 9, 2019

Two-Dimensional Quantum Materials and Heterostructures
Two-dimensional (2D) layers just one atom thick can be stripped from certain materials, such as graphene.
June 1, 2017
Using Interactive Digital Storytelling to Represent Transformative Quantum Technologies in Augmented/Extended Reality Environments
Summary A major roadblock to the broader adoption of quantum technologies is the long learning curve associated with their seemingly abstract concepts. This often renders quantum technologies inaccessible to most audiences, especially through explanations using conventional scientific language. In this project, we develop novel methods of interactive digital storytelling – augmented and extended reality (AR/XR) […]
February 24, 2021