Summary
Mesoscopic systems provide a new tool for quantum systems design. In particular, they are enabling of robust quantum control. Here “mesoscopic system” refers to a connected network where each element, if studied alone, would be a quantum bit. The network is too big to be treated fully quantum mechanically. We do not have individual control over each element and we measure collective properties of the network. However, the network retains quantum coherence and behaves in a uniquely quantum fashion. In this project, we design a novel protocol using an intermediate mesoscopic system to control and interconnect non-interacting qubits. Our method aims to create entanglement between two separated qubits; a pure quantum correlation between the target qubits that provides a measure of the mesoscopic system’s quantum capacity. Over the course of this project, we will develop new theory and experimental tools. Ultimately, we expect our work will lead to innovative design elements for use in quantum processor architectures and quantum measurement devices.

Figure 1: The summary of the entangling protocol: (a) The experimentally available control tools are used to correlate two joint logical states of the target with two very distinct collective states of the mesoscopic system, (b) A low-resolution global measurement over the mesoscopic system discerns between the distinct collective states of the mesoscopic system. This measurement updates the state of the qubits into one of the two logical joint states, each with a probability of ½, along with the state of the mesoscopic system. Both of these joint logical states are maximally entangled quantum states between the target qubits.
Related Content

Visible wavelength external cavity diode lasers in photonic integrated circuits for atomic technologies
Atoms can be controlled by manipulating their internal states using agile, quiet and reliable laser sources. An external-cavity diode laser (ECDL) is a crucial enabling technology to realize such laser sources since it allows for the narrowing of the linewidth of a laser diode and precise tuning of the laser frequency. This project aims to […]
April 19, 2023

Quantum State Tomography with Machine Learning
Summary An important challenge in building a quantum computer is quantifying the level of control obtained in the preparation of a quantum state. The state of a quantum device is characterized from experimental measurements, using a procedure known as tomography. Exact tomography requires a vast amount of computer resources, making it prohibitive for quantum […]
June 6, 2018
Spin-transfer Torque Magnetic Random Access Memory for On-chip Spin Information Storage
Summary Leakage power in semiconductor memories, such as Dynamic Random Access Memory (DRAM) and Static Random Access Memory (SRAM), can be substantial and is one of the limits for scalability of classical electronics. This is attributed to the fact that the information stored is volatile, requiring constant refreshing, as well as reprogramming upon powering […]
August 6, 2018