Summary
A superconducting quantum interference device (SQUID) is an extremely sensitive magnetic field detector. Microstrip SQUIDs can amplify weak radio frequency (RF) signals, a capability that makes them attractive as a potential alternative to the cryogenic semiconductor-based RF amplifiers that are available commercially, but at a cost of approximately $6,000 each. The challenge of using microstrip SQUIDs has been that they are static sensitive and can be overwhelmed by external noise. By tweaking microstrip SQUID design to achieve the quantum noise limit, and by packaging the technology into a more practical configuration, our team is working to reduce the cost of the SQUID approach by an order of magnitude. We also are working toward a much higher performance amplifier, with voltage noise reduced ten fold.
In the course of our work, we expect to fabricate “user-friendly” SQUIDs – packaging the RF filtering, RF-SQUID, and amplification together – such that a non-specialist could easily run the amplifier with the ease of running a conventional semiconductor amplifier. In addition to producing a practical, high-performance and economical amplifier, we believe that our work will facilitate multiple new quantum readout applications, as well as interesting fundamental physics.
Related Content
Developing Tools for Quantum Characterization and Validation
Summary Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]
October 3, 2017
Harnessing the Promise of Quantum Materials for Future Electronic Devices
Summary Two-dimensional (2D) quantum materials, such as graphene and molybdenum disulfide, have great potential for use in future flexible and wearable electronics applications. With traditional silicon-based electronics nearing their theoretical performance limits, nano-electronics made from 2D quantum materials offer breakthrough opportunities for energy-efficient, wearable ubiquitous computation. In this project, we will study integration of […]
June 14, 2018
Portable Quantum Dot Measurement System
Summary Detecting heavy metals in water is essential to ensure clean drinking water and appropriate regulatory decisions following an accident (e.g., a spill) or an emergency. Traditionally, high-sensitivity detection of heavy metals requires bulky and costly (to purchase and operate) lab-based instruments. We propose developing a palm-sized, element-specific, highly-sensitive, battery-operated, smartphone-controlled system for on-site measurement […]
July 21, 2022
QuantumIon: an open-access quantum computing platform
Summary Trapped ions are one of the most advanced technologies for quantum computing, offering multi-qubit control in a universal quantum computing architecture and the ability to perform calculations with unprecedented precision. In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an […]
September 9, 2019