Summary
Developing a new type of Fabry-Pérot cavity that allows improved control of the atoms’ emission into the cavity mode will result in enhancement of the efficiency and fidelity of quantum state transfer from photons to atoms and back. This in turn can be used to improve the performance of quantum networks and repeaters, as well as sensors based on atoms inside Fabry-Pérot cavities. In this project we design and fabricate Fabry-Pérot microcavities that trap only one polarization of light. A Fabry-Pérot cavity is an optical resonator formed by two parallel mirrors or reflective surfaces. When the frequency of light matches the spacing between the mirrors, photons can enter through the mirrors and become trapped inside the cavity, which can then be used to enhance their interactions with the medium between the mirrors. Alternatively, when an atom in an excited state is placed inside the cavity, the cavity will encourage the atom to emit light that matches the cavity, which is one of the phenomena on which laser is based. In our work, the microcavity consists of two metasurfaces that act as chiral polarization-selective (dichroic) mirrors and that tightly confine one type of circularly polarized optical field in the free space between them, while remaining transparent to light of the opposite circular polarization. We propose to realize free space Fabry-Pérot cavities by fabricating reflective and focusing metasurfaces on the tips of optical fibres. Finally, this project has the potential to improve the performance and scalability of quantum information platforms that rely on cavity quantum electrodynamics, and possibly trapped ions as well, by realizing optical cavities with smaller mode volumes, compact footprint, and chirality-enhanced light-atom coupling.
Related Content

Building Blocks for Quantum Neuromorphic Computing: Superconducting Quantum Memcapacitors
Quantum neuromorphic computing (QNC) is a novel method that combines quantum computing with brain-inspired neuromorphic computing. Neuromorphic computing performs computations using a complex ensemble of artificial neurons and synapses (i.e., electrical circuits) to emulate the human brain. QNC may lead to a quantum advantage by realizing these components with quantum memory elements, or memelements, which […]
June 12, 2023

Quantum Computational Resources in the Presence of Symmetry
Summary Fault-tolerance is essential to the performance of quantum technologies, but known schemes are extremely resource intensive. Thus, improving existing schemes or inventing new schemes is of central importance. This joint project is based on the realization that fault-tolerance schemes make use of symmetries in fundamental ways, and that studying the problem of fault tolerance […]
March 13, 2019

Functionalized Nanodiamonds for Sensing Biochemical Processes
Summary Chemotherapy is limited by the failure to clinically monitor the efficacy of the treatment in real-time, which results in suboptimal chemotherapy being given for a prolonged period. Predicting the outcome of chemotherapy immediately after drug administration can increase diagnostic accuracy, efficacy outcomes, and successful treatment. Quantum nanodiamond sensors can be used as optical sensors […]
August 31, 2022

Extensible Technology for a Medium-Scale Superconducting Quantum Processor
Summary Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach […]
November 28, 2016