Summary
Heavy metals are a major public health concern and their on-site detection in water supplies is not well served by existing lab techniques. We develop a new multi-modal platform comprising functionalized quantum dots of two-dimensional materials (2D-QDs) for the sensing of four highly-toxic heavy metal pollutants (arsenic, cadmium, lead and mercury). The zero-dimensional nature of quantum dots brings essential properties necessary for fluorescence-based chemical sensing of heavy metals in the field. We focus on one type of 2D material, molybdenum disulfide (MoS2), which is a direct band gap semiconductor when produced as a monolayer. To fabricate and functionalize the 2D-QDs, we expose flakes of MoS2 suspended in a solution to a pulsed laser. This technique allows us to simultaneously functionalize the 2D-QDs, so that they become sensitive to a specific pollutant metal, and control their fluorescence wavelength, so that 2D-QDs functionalized for different target metals will produce distinguishable optical signals. By combining multiple types of functionalized 2D-QDs into a single solution capable of simultaneously identifying various heavy metals, we expect to advance a range of applications that require a field-deployable solution. These include for example, rapid contaminant point source identification, and water analysis of heavy metals in developing countries where conventional equipment is too costly.

Figure 1. Functionalized quantum dots of a 2D material are being developed for fluorescence-based chemical sensing of toxic heavy metal pollutants.
Related Content

Reliably operating noisy quantum computers
Summary The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of […]
January 22, 2020

Two-Dimensional Quantum Materials and Heterostructures
Two-dimensional (2D) layers just one atom thick can be stripped from certain materials, such as graphene.
June 1, 2017
Using Interactive Digital Storytelling to Represent Transformative Quantum Technologies in Augmented/Extended Reality Environments
Summary A major roadblock to the broader adoption of quantum technologies is the long learning curve associated with their seemingly abstract concepts. This often renders quantum technologies inaccessible to most audiences, especially through explanations using conventional scientific language. In this project, we develop novel methods of interactive digital storytelling – augmented and extended reality (AR/XR) […]
February 24, 2021

Entangled States of Beams and their Applications
Summary With David Cory and collaborators at the National Institute of Standards and Technology (NIST) we explore how to engineer beams of neutron or photons that carry entanglement. The degrees of freedom that can be entangled include spin (polarization), momentum, displacement, and angular momentum. These have potential applications ranging from studies of helical internal magnetic fields […]
September 7, 2016