TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Quantum Sensing with Small Quantum Systems

    Go Back Back

    More Topics

    chemistry grand challenge nitrogen vacancy nv defect in diamond p defect in si phosphorus sensing silicon

    Summary

     

    There are small quantum systems over which we have very good control and which have long lifetimes. Examples include the phosphorous (P) defect in silicon (Si) and the nitrogen vacancy (NV) defect in diamond. With P defect in Si, we focus on improving our understanding of the hyperpolarization mechanism to better enable engineering of quantum systems that are highly and quickly polarizable with long coherence times. With the NV defect in diamond, we are developing control methods to suppress zero-field splitting, a miniaturized optics setup and a small package for the required microwave and control hardware. We also utilize the NV defect in diamond as a chemical sensing platform to enable sensing of a target molecule of choice. Advancements in these areas offer the potential to transform a host of technologies from gyroscopes to magnetometers.

     


     

    Principal Investigator (PI) or Team Coordinator

    David Cory

    sidebar icon sidebar icon
    Group sensing icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Ultrafast Dynamical Studies of Valley-Based Qubits
    TQT Computation

    Ultrafast Dynamical Studies of Valley-Based Qubits

    Summary   As monolayers, transition metal dichalcogenides (TMDCs) – such as tungsten diselenide (WSe2) – become direct-bandgap semiconductors capable of emitting light. Compared to conventional direct-bandgap semiconductors, such as III-V semiconductors like GaAs, excitons (quasiparticles made of an electron hole bound with an electron) and single-layer TMDCs (SL-TMDCs) have much stronger binding energy. Excitons and […]

    June 29, 2018

    PI: Germán Sciaini

    Skip Tags chemistry computation + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Ultrafast Dynamical Studies of Valley-Based Qubits

    Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions

    Summary   The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. […]

    July 30, 2018

    PI: Crystal Senko

    Skip Tags benchmarking computation + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions
    Reliably operating noisy quantum computers
    TQT Computation

    Reliably operating noisy quantum computers

    Summary The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of […]

    January 22, 2020

    PI: Joel Wallman

    Skip Tags accuracy applied mathematics + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Reliably operating noisy quantum computers
    Topological Quantum Computing on Majorana Platform
    TQT Computation

    Topological Quantum Computing on Majorana Platform

    Full-scale quantum computing will require the capability for error-tolerant quantum information processing. 

    January 11, 2017

    PI: Guo-Xing Miao

    Skip Tags computation electrical & computer engineering + 1 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Topological Quantum Computing on Majorana Platform

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo