TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Micro-Supercapacitors Based on Termination Optimized MXene Quantum Dots with Ultra-High Rate Capability and Fast Frequency Response

    Go Back Back

    More Topics

    Applied Carbon Nanotechnology Lab energy micro-supercapacitors quantum dots

    Micro-supercapacitors (MCs) are miniaturized energy storage devices that can enhance the performance of wearable health devices, medical implants, wireless sensors, and micro-electromechanical systems due to their fast frequency response, long life cycle, and vast temperature operation. However, to make these MC systems into commercially feasible products, necessary improvements to current MC performance are necessary, primarily in increasing the energy density. Reducing the electrode materials’ dimension is the most effective approach to boost the performance of MCs. Graphene quantum dots (QDs) have already shown improved response over conventional MCs. This work aims to develop QDs from MXene, a class of layered transition metal carbides, carbonitrides or nitrides. These MXene QDs will increase the energy density of MCs by twofold and optimize their electrochemical performance for commercial viability. MXene of an optimized size for QDs will be produced using environmentally friendly etching methods. MXene QDs with different terminations will then be prepared and used as electrodes to fabricate MCs and to evaluate the capacitance and stability. Density Functional Theory (DFT) methods will be used to examine the physical properties of the materials and further understand the experimental results. The MCs that display the best performance will be assembled to study their characteristics further. The research will provide a green synthesis protocol of MXene and accelerate the discovery of optimized MXene QD materials. Moreover, the MXene QD MC devices will have increased energy storage performance and durability, ideally suited for the next generation of wearable health devices and clean energy storage.

     

    Figure 1. Aiping Yu, Professor and University Research Chair. She is the recipient of the prestigious NSERC Steacie Fellowship and RSC Rutherford Medal, as well as listed in the 2022 World’s Top 2% Scientist database published by John Ioannidis at Stanford. Her research mainly focuses on 2D and carbon nanomaterials synthesis and surface tailoring for various applications, including supercapacitors, batteries, CO2 reduction, and polymer composites for EMI shielding and anti-corrosion.

     

    Principal Investigator (PI) or Team Coordinator

    Aiping Yu

    sidebar icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Qubits and Quantum Effects in Biology

    Qubits and Quantum Effects in Biology

    It is unknown whether biological processes make direct use of quantum effects, as opposed to depending merely on the influence of quantum physics on chemical bonding and molecular structure.

    June 1, 2017

    PI: Michel Gingras, Zoya Leonenko

    Skip Tags biology nature + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Qubits and Quantum Effects in Biology
    Developing Tools for Quantum Characterization and Validation
    TQT Computation

    Developing Tools for Quantum Characterization and Validation

    Summary   Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]

    October 3, 2017

    PI: Joseph Emerson

    Skip Tags applied math computation + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Developing Tools for Quantum Characterization and Validation
    Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
    TQT Communication

    Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials

    Summary  Atomically thin 2D materials constitute promising building blocks for quantum devices due to their exotic, layer-dependent electronic properties. The ability to stack these materials in alternating layers enables heterostructures to be built in almost limitless combinations and over small enough length scales to observe quantum phenomena. So far though, practical implementation of devices based […]

    April 1, 2020

    PI: Michael Pope

    Skip Tags 2D chemical engineering + 11 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
    Building Blocks for Quantum Neuromorphic Computing: Superconducting Quantum Memcapacitors
    TQT Computation

    Building Blocks for Quantum Neuromorphic Computing: Superconducting Quantum Memcapacitors

    Quantum neuromorphic computing (QNC) is a novel method that combines quantum computing with brain-inspired neuromorphic computing. Neuromorphic computing performs computations using a complex ensemble of artificial neurons and synapses (i.e., electrical circuits) to emulate the human brain. QNC may lead to a quantum advantage by realizing these components with quantum memory elements, or memelements, which […]

    June 12, 2023

    PI: Matteo Mariantoni

    Skip Tags computation entanglement + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Building Blocks for Quantum Neuromorphic Computing: Superconducting Quantum Memcapacitors

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo