The promise of two-dimensional electron gases in quantum wells for wide-ranging quantum devices
Two-dimensional electron gases in quantum wells are a powerful resource for several quantum technology applications, including quantum sensing, metrology, and topological quantum computing. In a conventional quantum computer, information is localized within a single particle (or qubit). Noise that affects that qubit can cause quantum information to get scrambled and lost. For fault-tolerant quantum […]
June 15, 2023
Materials for Majorana-based Topological Qubits
Summary Topological qubits offer a novel pathway to scalable quantum computing by simultaneously allowing for ease of coupling between qubits and strong decoupling of qubits from noise and dissipation. The most promising direction explores the topologically induced protection of theoretically predicted exotic quasiparticles, the so-called Majorana Zero Modes or MZMs. To-date MZMs, which follow […]
January 28, 2019
Hybrid Quantum Materials towards Topological Quantum Computing
Summary Proximity engineered hybrid materials have shown promise for topological quantum information processing. This form of quantum computing provides a stable, error-tolerant approach for building scalable quantum information processors. Topological quantum computing relies on braiding non-Abelian particles, such as Majorana fermions, which do not exist in nature. One can however use materials engineering to […]
December 8, 2018