TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Quantum Simulations of Fundamental Interactions

    Go Back Back

    More Topics

    1d algorithms CDL chemistry computation high energy physics hybrid materials new ideas non-Abelian optimization quantum-classical simulations Vector institute

    Summary

    To address questions in modern physics such as “what is the structure of matter inside neutron stars?” we need better computational methods to evaluate the interplay of fundamental forces between elementary particles. To-date the response to such questions rests on numerical computer simulations that are inherently limited. In this project, we develop new theoretical tools for quantum simulations of non-Abelian problems in high energy physics (HEP), and HEP problems beyond one dimension. Our work is conducted in close collaboration with experimental groups to design robust and feasible simulation schemes that are custom-designed to particular quantum platforms. We will integrate methods from machine learning and artificial intelligence to create a conceptually new framework for hybrid quantum-classical simulations. These novel tools are expected to find useful applications beyond HEP in material science and chemistry. Through collaborations with Creative Destruction Lab and the Vector Institute we plan to accelerate the path to industry deployment.

    Figure 1. Spontaneous particle – antiparticle creation. We develop novel protocols that will simulate the dynamics of pair creation and other effects on quantum devices.
    Image: Harald Ritsch (Source: IQOQI)

    Principal Investigator (PI) or Team Coordinator

    Christine Muschik

    sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Composite Superconductors for Improved Quantum Coherence
    TQT Computation

    Composite Superconductors for Improved Quantum Coherence

    Summary   Conventional superconductors have trouble performing well in magnetic fields required for electron spin resonance (ESR) – based quantum information processing applications. We can, however, use proximity engineering to select desired properties from different materials and combine them for improved superconducting performance in magnetic fields — an improvement that would have strong implications for […]

    December 12, 2018

    PI: Guo-Xing Miao

    Skip Tags computation ESR + 6 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Composite Superconductors for Improved Quantum Coherence
    Quantum Computational Resources in the Presence of Symmetry
    TQT Computation

    Quantum Computational Resources in the Presence of Symmetry

    Summary Fault-tolerance is essential to the performance of quantum technologies, but known schemes are extremely resource intensive. Thus, improving existing schemes or inventing new schemes is of central importance. This joint project is based on the realization that fault-tolerance schemes make use of symmetries in fundamental ways, and that studying the problem of fault tolerance […]

    March 13, 2019

    PI: Joseph Emerson

    Skip Tags computation condensed matter + 10 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Computational Resources in the Presence of Symmetry
    A Reformulation of Quantum Game Theory
    TQT Communication

    A Reformulation of Quantum Game Theory

    Summary Classical game theory – conducted at the interface between economics and computer science – has found applications in topics ranging from networking and security to online markets. Despite over 20 years of research into connections between game theory and quantum information, we have yet to see any significant implications of quantum information when applied […]

    April 1, 2020

    PI: John Watrous

    Skip Tags communication computational complexity + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to A Reformulation of Quantum Game Theory

    Fabrication of Ultra Low Noise RF SQUID Amplifiers

    A superconducting quantum interference device (SQUID) is an extremely sensitive magnetic field detector.

    June 1, 2017

    PI: Jan Kycia

    Skip Tags physics & astronomy seed fund + 1 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Fabrication of Ultra Low Noise RF SQUID Amplifiers

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo