Summary
In this project we develop a novel infrared camera with low noise and high detection efficiency for biomedical applications of optical coherence tomography (OCT) using quantum materials. OCT is a technique used to image the back of the eye and allow for the diagnosis of detrimental eye conditions, for e.g., macular degeneration, diabetic retinopathy and glaucoma. It can also be used for early detection of Alzheimer’s disease. However, current OCT systems are limited by their low sensitivity and spatial resolution. To provide more precise early diagnosis of potentially blinding ocular diseases, we utilize the unique expertise of a collaborative team of researchers to develop an infrared camera with sub-micron resolution and single-photon sensitivity: design and nano fabrication of quantum sensors (Reimer), design and fabrication of CMOS electrical read-out circuits to make the camera (Karim and Levine), and extensive knowledge and research expertise in the area of OCT (Bizheva). At the heart of the infrared camera is a single photon detector recently developed through another TQT-supported project, Next Generation Quantum Sensors. This sensor is based on nanostructured arrays of tapered semiconductor nanowires and is capable to detect light with high efficiency, speed, and timing resolution over an unprecedented wavelength range from the UV to infrared, all while operating at room temperature. This sensor will be integrated into a prototype camera and into existing OCT systems to realize enhanced OCT images of the human retina and cornea in-vivo.
Related Content
Portable Quantum Dot Measurement System
Summary Detecting heavy metals in water is essential to ensure clean drinking water and appropriate regulatory decisions following an accident (e.g., a spill) or an emergency. Traditionally, high-sensitivity detection of heavy metals requires bulky and costly (to purchase and operate) lab-based instruments. We propose developing a palm-sized, element-specific, highly-sensitive, battery-operated, smartphone-controlled system for on-site measurement […]
July 21, 2022
Quantum Sensing Applications using Quantum Communication Technology
Summary The Quantum Encryption and Science Satellite provides a platform to develop and deploy quantum sensing and metrology via photonic channels. This project will build upon ‘free-space’ quantum communication technology and explore new approaches and methods to advance two primary applications: quantum-enhanced telescopes, and spectroscopic sensing for methane detection in the atmosphere. For the […]
December 8, 2018
Zero-Dimensional Quantum Materials for the Next Generation of Highly-Selective Chemical Sensors
Summary Heavy metals are a major public health concern and their on-site detection in water supplies is not well served by existing lab techniques. We develop a new multi-modal platform comprising functionalized quantum dots of two-dimensional materials (2D-QDs) for the sensing of four highly-toxic heavy metal pollutants (arsenic, cadmium, lead and mercury). The zero-dimensional […]
March 11, 2019
Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions
Summary The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. […]
July 30, 2018