Summary
An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all times – such as links to hand-held devices or aircraft – polarization encoding leads to increased error. For these situations, time-bin encoding offers a promising robust solution. In this approach, time photon represents ‘0’ or ‘1’ depending on its detection in one of two time windows. Just like in the case of polarization encoding, where a photon can be in a superposition of vertical and horizontal polarization, a time-bin encoded photon can be in a superposition of being in the first and the second time window. Additionaly, quantum signals can be relatively easily converted between being polarization and time-bin encoded.
In this project, we jointly develop a quantum receiver with short time delay and high timing resolution that is optimized to handle time-bin encoded quantum signals. By combining our team’s expertise in free-space quantum receivers with a new detector array technology developed by Dr. Serge Charlebois and Jean-Francois Pratte of the University of Sherbrooke and by introducing new capabilities for integrated free-space time-bin encoding with high timing resolution detection, we expect to achieve state-of-the-art performance for quantum signal receiver technology. Such high-speed devices will open new doors for a variety of applications including daylight and continuous variable quantum key distribution, quantum sensing, imaging and LIDAR, and fundamental science tests.
Related Content
Quantum Computational Resources in the Presence of Symmetry
Summary Fault-tolerance is essential to the performance of quantum technologies, but known schemes are extremely resource intensive. Thus, improving existing schemes or inventing new schemes is of central importance. This joint project is based on the realization that fault-tolerance schemes make use of symmetries in fundamental ways, and that studying the problem of fault tolerance […]
March 13, 2019
Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
Summary Atomically thin 2D materials constitute promising building blocks for quantum devices due to their exotic, layer-dependent electronic properties. The ability to stack these materials in alternating layers enables heterostructures to be built in almost limitless combinations and over small enough length scales to observe quantum phenomena. So far though, practical implementation of devices based […]
April 1, 2020
Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
Summary Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible, we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement […]
October 29, 2018
Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
Summary In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]
December 8, 2018