TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Advanced microwave electronics enabling quantum technologies

    Go Back Back

    More Topics

    amplifier computation cryogenic electrical & computer engineering electronics josephson junction JPA microwave on-chip seed superconducting

    Summary 

    Superconducting quantum computers require quantum-limited measurements at microwave frequencies in order to implement error correction. Conventionally, this is accomplished using near quantum-limited Josephson Parametric Amplifiers (JPAs). The JPAs require bulky ferrite-based circulators that prevent on-chip integration of the amplifiers with the processor and take up the majority of space and cooling power in the cryogenic system. In this project, we develop a new type of circulator that does not require large magnetic fields or the use of ferrites, which makes them suitable for on-chip integration and scalability. We combine the expertise of Chris Wilson’s group in superconducting quantum electronics with our experience in microwave technology to accelerate new and innovative designs. By integrating the processor and amplifier on-chip, our goal is to develop robust microwave electronics that will serve as a key enabler for a range of quantum technologies, spanning computation, sensing and communication.

    Principal Investigator (PI) or Team Coordinator

    Raafat Mansour

    sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
    TQT Communication

    Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires

    Summary   Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible,  we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement […]

    October 29, 2018

    PI: Michal Bajcsy & Michael Reimer

    Skip Tags communication electrical & computer engineering + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
    Topological Quantum Computing on Majorana Platform
    TQT Computation

    Topological Quantum Computing on Majorana Platform

    Full-scale quantum computing will require the capability for error-tolerant quantum information processing. 

    January 11, 2017

    PI: Guo-Xing Miao

    Skip Tags computation electrical & computer engineering + 1 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Topological Quantum Computing on Majorana Platform
    Composite Superconductors for Improved Quantum Coherence
    TQT Computation

    Composite Superconductors for Improved Quantum Coherence

    Summary   Conventional superconductors have trouble performing well in magnetic fields required for electron spin resonance (ESR) – based quantum information processing applications. We can, however, use proximity engineering to select desired properties from different materials and combine them for improved superconducting performance in magnetic fields — an improvement that would have strong implications for […]

    December 12, 2018

    PI: Guo-Xing Miao

    Skip Tags computation ESR + 6 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Composite Superconductors for Improved Quantum Coherence
    Visible wavelength external cavity diode lasers in photonic integrated circuits for atomic technologies

    Visible wavelength external cavity diode lasers in photonic integrated circuits for atomic technologies

    Atoms can be controlled by manipulating their internal states using agile, quiet and reliable laser sources. An external-cavity diode laser (ECDL) is a crucial enabling technology to realize such laser sources since it allows for the narrowing of the linewidth of a laser diode and precise tuning of the laser frequency. This project aims to […]

    April 19, 2023

    PI: Matthew Day

    Skip Tags diode laser + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Visible wavelength external cavity diode lasers in photonic integrated circuits for atomic technologies

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo