Summary
The aim of the work is to develop theoretical tools to simulate and predict the behaviour of a one-dimensional chain of trapped dipolar molecules and to study the nature of entanglement as a design resource. In this device, individual water molecules are trapped inside C60 fullerene cages (also known as buckyballs), which in turn are inserted into a carbon nanotube. Such a peapod-like structure can be created using recent advances in organic synthesis. Remarkably, the quantum level structure of the guest molecule in the carbon nanotube peapod remains nearly identical to a free molecule, which makes this system a promising platform for implementing quantum information protocols, comparable to those explored with atoms and molecules trapped in optical lattices. Along the way, we are working to understand the response of the device to external electromagnetic fields, which could open the door to its use for precision electric field sensing with potential capabilities to detect fields from a single molecule.
Related Content
Inverse Photoemission Spectroscopy of Quantum Materials
Summary Quantum materials that exhibit strong electron correlations lead to phenomena, such as superconductivity and topologically protected states, that are important for quantum computation, sensing, and other applications. For example, we may utilize symmetry protected topological states to make qubits that are robust against decoherence, while advances in high temperature superconductors may significantly reduce […]
September 20, 2018
Advanced microwave electronics enabling quantum technologies
Summary Superconducting quantum computers require quantum-limited measurements at microwave frequencies in order to implement error correction. Conventionally, this is accomplished using near quantum-limited Josephson Parametric Amplifiers (JPAs). The JPAs require bulky ferrite-based circulators that prevent on-chip integration of the amplifiers with the processor and take up the majority of space and cooling power in the […]
April 1, 2020
Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing
June 1, 2017