Summary
Fault-tolerance is essential to the performance of quantum technologies, but known schemes are extremely resource intensive. Thus, improving existing schemes or inventing new schemes is of central importance. This joint project is based on the realization that fault-tolerance schemes make use of symmetries in fundamental ways, and that studying the problem of fault tolerance broadly from a symmetry perspective may offer valuable insights. We will do so by focusing on fault-tolerance and control-error mitigation primitives that make explicit use of symmetries, and unveil fundamental connections between the two. This involves the study of decoherence and error control, and measures that counteract them in two settings: fault-tolerant universal quantum computation (FTQC) using magic state distillation; and computational phases of matter. We will address which types of symmetries lead to computationally universal phases of matter, and the minimum operational cost of fault-tolerant universal quantum computation. This work is a collaboration between the research groups of David Poulin, Robert Raussendorf, and Beni Yoshida from the Université de Sherbrooke, University of British Columbia and the Perimeter Institute, respectively. Results from this project will shed light on which order parameters of condensed matter systems are important for quantum information processing and quantum sensing, and how to assess and reduce the overhead requirements for fault-tolerant quantum computation via understanding the process of magic-state distillation.

Figure 1. (a) Heat plot for the non-classicality measure mana, for a single qutrit. The grey region is completely classical, and it contains the stabilizer polytope (with dashed boundary) as a strict subset. (b) The working of quantum computation in SPT phases rest on the presence of symmetry. Shown here is a symmetry that enables quantum computational wire, a computational primitive for computation.
Related Content

A Reformulation of Quantum Game Theory
Summary Classical game theory – conducted at the interface between economics and computer science – has found applications in topics ranging from networking and security to online markets. Despite over 20 years of research into connections between game theory and quantum information, we have yet to see any significant implications of quantum information when applied […]
April 1, 2020

Applications of Neutron Interferometry and Structured Neutron Beams
Summary Neutrons are a powerful probe of matter and physics due to their Angstrom size wavelengths, electric neutrality and relatively large mass. In this project, we develop quantum sensors that exploit these attributes to increases the precision of measurements of fundamental forces and materials structure. With David Cory, Alexander Cronin of the University of Arizona, […]
July 31, 2018
Novel Superconducting Qubits for Error-Corrected Processors
Summary In this project, we develop novel superconducting qubits for error-corrected processors to enable large-scale quantum computing. Our design efforts will specifically target error-corrected architectures through a variety of paths. Possible features will include built-in parity measurements and the use of bosonic codes, such as Fock state and Cat codes, as our starting focus. Early […]
June 26, 2019

Quantum Dynamics of Cavity Interactions with Spin Ensembles
Summary High quality factor cavities can be powerful control elements for ensembles of spins, enabling unitary control as well as on demand cooling. They can also be used to couple two otherwise non-interacting ensembles. The goal of the project is to explore the physics and engineering of such systems both theoretically and experimentally. The laboratory contains a […]
September 7, 2016