Summary
Fault-tolerance is essential to the performance of quantum technologies, but known schemes are extremely resource intensive. Thus, improving existing schemes or inventing new schemes is of central importance. This joint project is based on the realization that fault-tolerance schemes make use of symmetries in fundamental ways, and that studying the problem of fault tolerance broadly from a symmetry perspective may offer valuable insights. We will do so by focusing on fault-tolerance and control-error mitigation primitives that make explicit use of symmetries, and unveil fundamental connections between the two. This involves the study of decoherence and error control, and measures that counteract them in two settings: fault-tolerant universal quantum computation (FTQC) using magic state distillation; and computational phases of matter. We will address which types of symmetries lead to computationally universal phases of matter, and the minimum operational cost of fault-tolerant universal quantum computation. This work is a collaboration between the research groups of David Poulin, Robert Raussendorf, and Beni Yoshida from the Université de Sherbrooke, University of British Columbia and the Perimeter Institute, respectively. Results from this project will shed light on which order parameters of condensed matter systems are important for quantum information processing and quantum sensing, and how to assess and reduce the overhead requirements for fault-tolerant quantum computation via understanding the process of magic-state distillation.

Figure 1. (a) Heat plot for the non-classicality measure mana, for a single qutrit. The grey region is completely classical, and it contains the stabilizer polytope (with dashed boundary) as a strict subset. (b) The working of quantum computation in SPT phases rest on the presence of symmetry. Shown here is a symmetry that enables quantum computational wire, a computational primitive for computation.
Related Content

Quantum Simulation of Strongly Coupled Field Theories
Strongly-coupled field theories describe both fundamental and applied quantum problems.
August 10, 2017

Inverse Photoemission Spectroscopy of Quantum Materials
Summary Quantum materials that exhibit strong electron correlations lead to phenomena, such as superconductivity and topologically protected states, that are important for quantum computation, sensing, and other applications. For example, we may utilize symmetry protected topological states to make qubits that are robust against decoherence, while advances in high temperature superconductors may significantly reduce […]
September 20, 2018

Quantum Material Multilayer Photonic Devices and Network
Summary Realizing highly integrated quantum photonic devices on a chip can enable new opportunities for photonic quantum computation. In this project, we explore heterostructures of stacked two-dimensional (2D) materials, such transition metal dichalcogenides (TMDC) or graphene, combined with optical microcavities as a platform for such devices. 2D materials are extremely thin and flexible, and have […]
December 12, 2019

Functionalized Nanodiamonds for Sensing Biochemical Processes
Summary Chemotherapy is limited by the failure to clinically monitor the efficacy of the treatment in real-time, which results in suboptimal chemotherapy being given for a prolonged period. Predicting the outcome of chemotherapy immediately after drug administration can increase diagnostic accuracy, efficacy outcomes, and successful treatment. Quantum nanodiamond sensors can be used as optical sensors […]
August 31, 2022