A programmable structured light interferometer has shown remarkable advancements in studying disorders and diseases of the human eye
A collaboration between the Institute for Quantum Computing (IQC), the University of Waterloo School of Optometry and Vision Science, and the Center for Eye and Vision Research in Hong Kong is working on a programmable structured light interferometer that can detect debilitating eye diseases and disorders such as macular degeneration before irreversible damage occurs. […]
April 3, 2023
Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
Summary In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]
December 8, 2018
Applications of Neutron Interferometry and Structured Neutron Beams
Summary Neutrons are a powerful probe of matter and physics due to their Angstrom size wavelengths, electric neutrality and relatively large mass. In this project, we develop quantum sensors that exploit these attributes to increases the precision of measurements of fundamental forces and materials structure. With David Cory, Alexander Cronin of the University of Arizona, […]
July 31, 2018
New interferometry technique more powerful and cost-effective
Tuesday, March 20, 2018 A new neutron interferometry technique developed by researchers from the Institute for Quantum Computing, the National Institute of Standards and Technology (NIST) and the National Institute of Health (NIH) will allow for faster and more precise measurements, and could pave the way for advances in imaging, materials science and quantum […]
March 20, 2018