TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Structured light enhanced entoptic stimuli for vision science applications

    Go Back Back

    Abstract 

     

    The dichroic macular pigment in the Henle fiber layer in the fovea enables humans to perceive entoptic phenomena when viewing polarized blue light. In the standard case of linearly polarized stimuli, a faint bowtie-like pattern known as the Haidinger’s brush appears in the central point of fixation. As the shape and clarity of the perceived signal is directly related to the health of the macula, Haidinger’s brush has been used as a diagnostic marker in studies of early stage macular degeneration and central field visual dysfunction. However, due to the weak nature of the perceived signal the perception of the Haidinger’s brush has not been integrated with modern clinical methods. Recent attempts have been made to increase the strength of the perceived signal by employing structured light with spatially varying polarization profiles. Here we review the advancements with the structured light stimuli and describe the current challenges and future prospects.

     

    This article was first published by Frontiers in Neuroscience.

    © Pushin, D. A., Cory, D. G., Kapahi, C., Kulmaganbetov, M., Mungalsingh, M., Silva, A. E., Singh, T., Thompson, B., & Sarenac, D. (2023). Structured light enhanced entoptic stimuli for vision science applications. Frontiers in Neuroscience, 17. https://doi.org/10.3389/fnins.2023.1232532

    Author(s)

    Dmitry A. Pushin; David G. Cory; Connor Kapahi; Mukhit Kulmaganbetov; Melanie Mungalsingh; Andrew E. Silva; Taranjit Singh; Benjamin Thompson; Dusan Sarenac

    Date

    2023-07-24

    Publication

    Frontiers in Neuroscience

    More Info

    Read More

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo