TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Simulating 2D Effects in Lattice Gauge Theories on a Quantum Computer

    Go Back Back

    Abstract 

     

    Quantum computing is in its greatest upswing, with so-called noisy-intermediate-scale-quantum devices heralding the computational power to be expected in the near future. While the field is progressing toward quantum advantage, quantum computers already have the potential to tackle classically intractable problems. Here, we consider gauge theories describing fundamental-particle interactions. On the way to their full-fledged quantum simulations, the challenge of limited resources on near-term quantum devices has to be overcome. We propose an experimental quantum simulation scheme to study ground-state properties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology. Our protocols can be adapted to larger lattices and offer the perspective to connect the lattice simulation to low-energy observable quantities, e.g., the hadron spectrum, in the continuum theory. By including both dynamical matter and a nonminimal gauge-field truncation, we provide the novel opportunity to observe 2D effects on present-day quantum hardware. More specifically, we present two variational-quantum-eigensolver- (VQE) based protocols for the study of magnetic field effects and for taking an important first step toward computing the running coupling of QED. For both instances, we include variational quantum circuits for qubit-based hardware. We simulate the proposed VQE experiments classically to calculate the required measurement budget under realistic conditions. While this feasibility analysis is done for trapped ions, our approach can be directly adapted to other platforms. The techniques presented here, combined with advancements in quantum hardware, pave the way for reaching beyond the capabilities of classical simulations.

    © PRX Quantum originally published as: Paulson, D., Dellantonio, L., Haase, J. F., Celi, A., Kan, A., Jena, A., Kokail, C., van Bijnen, R., Jansen, K., Zoller, P., & Muschik, C. A. (2021). Simulating 2d effects in lattice gauge theories on a quantum computer. PRX Quantum, 2(3). https://doi.org/10.1103/prxquantum.2.030334

    Author(s)

    Danny Paulson, Luca Dellantonio, Jan F. Haase, Alessio Celi, Angus Kan, Andrew Jena, Christian Kokail, Rick van Bijnen, Karl Jansen, Peter Zoller, Christine A. Muschik

    Date

    2021-08-25

    Publication

    PRX Quantum

    More Info

    Read More

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo