TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Measuring the visual angle of polarization-related entoptic phenomena using structured light

    Go Back Back

    Abstract 

     

    The ability to perceive polarization-related entoptic phenomena arises from the dichroism of macular pigments held in Henle’s fiber layer of the retina and can be inhibited by retinal diseases, such as age-related macular degeneration, which alters the structure of the macula. Structured light tools enable the direct probing of macular pigment density and retinal structure through the perception of polarization-dependent entoptic patterns. Here, we directly measure the visual angle of an entoptic pattern created through the illumination of the retina with a structured state of light and a perception task that is insensitive to corneal birefringence. The central region of the structured light stimuli was obstructed, with the size of the obstruction varying according to a psychophysical staircase. Two stimuli, one producing 11 azimuthal fringes and the other three azimuthal fringes, were presented to 24 healthy participants. The pattern with 11 azimuthal fringes produced an average visual angle threshold of 10° ± 1° and a 95% confidence interval (C.I.) of [6°, 14°]. For the pattern with three azimuthal fringes, a threshold extent of 3.6° ± 0.3° C.I. = [1.3°, 5.8°] was measured, a value similar to the published extent of Haidinger’s brush (4°). The increase in apparent size and clarity of entoptic phenomena produced by the presented structured light stimuli offers the potential to detect the early signs of macular disease over perception tasks using uniform polarization stimuli.

     

    © Kapahi, C., Silva, A. E., Cory, D. G., Kulmaganbetov, M., Mungalsingh, M. A., Pushin, D. A., Singh, T., Thompson, B., & Sarenac, D. (2024). Measuring the visual angle of polarization-related entoptic phenomena using structured light. Biomedical Optics Express, 15(2). https://doi.org/10.1364/boe.507519

    Author(s)

    C. Kapahi, A. E. Silva, D. G. Cory, M. Kulmaganbetov, M. A. Mungalsingh, D. A. Pushin, T. Singh, B. Thompson, D. Sarenac

    Date

    2024-01-30

    Publication

    Biomedical Optics Express

    More Info

    Read More

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo