TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Efficient algorithms to solve atom reconfiguration problems. II. Assignment-rerouting-ordering algorithm

    Go Back Back

    Abstract 

     

    Programmable arrays of optical traps enable the assembly of configurations of single atoms to perform controlled experiments on quantum many-body systems. Finding the sequence of control operations to transform an arbitrary configuration of atoms into a predetermined one requires solving an atom reconfiguration problem quickly and efficiently. A typical approach to solving atom reconfiguration problems is to use an assignment algorithm to determine which atoms to move to which traps. This approach results in control protocols that exactly minimize the number of displacement operations; however, this approach does not optimize for the number of displaced atoms or the number of times each atom is displaced, resulting in unnecessary control operations that increase the execution time and failure rate of the control protocol. In this work we propose the assignment-rerouting-ordering (ARO) algorithm to improve the performance of assignment-based algorithms in solving atom reconfiguration problems. The ARO algorithm uses an assignment subroutine to minimize the total distance traveled by all atoms, a rerouting subroutine to reduce the number of displaced atoms, and an ordering subroutine to guarantee that each atom is displaced at most once. The ordering subroutine relies on the existence of a partial ordering of moves that can be obtained using a polynomial-time algorithm that we introduce within the formal framework of graph theory. We numerically quantify the performance of the ARO algorithm in the presence and in the absence of loss and show that it outperforms the exact, approximation, and heuristic algorithms that we use as benchmarks. Our results are useful for assembling large configurations of atoms with high success probability and fast preparation time, as well as for designing and benchmarking novel atom reconfiguration algorithms.

     

    © El Sabeh, R., Bohm, J., Ding, Z., Maaz, S., Nishimura, N., El Hajj, I., Mouawad, A. E., & Cooper-Roy, A. (2023). Efficient algorithms to solve atom reconfiguration problems. II. Assignment-rerouting-ordering algorithm. Physical Review. A/Physical Review, A, 108(2). https://doi.org/10.1103/physreva.108.023108

    Author(s)

    Remy El Sabeh; Jessica Bohm; Zhiqian Ding; Stephanie Maaz; Naomi Nishimura; Izzat El Hajj; Amer E. Mouawad; Alexandre Cooper

    Date

    2023-08-04

    Publication

    Physical Review Applied

    More Info

    Read More

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo