TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control

    Go Back Back

    Abstract

    High-precision, individually programmable manipulation of quantum particles is crucial for scaling up quantum information processing (QIP) systems such as laser-cooled trapped-ions. However, restricting undesirable “crosstalk” in optical manipulation of ion qubits is fundamentally challenging due to micron-level inter-ion separation. Further, inhomogeneous ion spacing and high susceptibility to aberrations at UV wavelengths suitable for most ion-species pose severe challenges. Here, we demonstrate high-precision individual addressing (λ = 369.5 nm) of Yb+ using a reprogrammable Fourier hologram. The precision is achieved through in-situ aberration characterization via the trapped ion, and compensating (to λ/20) with the hologram. Using an iterative Fourier transformation algorithm (IFTA), we demonstrate an ultra-low (<10−4) intensity crosstalk error in creating arbitrary pair-wise addressing profiles, suitable for over fifty ions. This scheme relies on standard commercial hardware, can be readily extended to over a hundred ions, and adapted to other ion-species and quantum platforms.

     

    © Chung-You Shih, Sainath Motlakunta, Nikhil Kotibhaskar, Manas Sajjan, Roland Hablützel & Rajibul Islam, originally published as: Shih, C.-Y., Motlakunta, S., Kotibhaskar, N., Sajjan, M., Hablützel, R., & Islam, R. (2021). Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control. Npj Quantum Information, 7(1). https://doi.org/10.1038/s41534-021-00396-0

    Author(s)

    Chung-You Shih, Sainath Motlakunta, Nikhil Kotibhaskar, Manas Sajjan, Roland Hablützel, Rajibul Islam

    Date

    2021-04-08

    Publication

    Npj Quantum Information

    More Info

    Read More

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo