
FE region: −"#"$% &'( + * + ,- = #
Other regions: −"#"/ &'( = 0	

Poisson’s Equation

P FE (x,	z),	VPI (x)< (x,	z)

= > = 	 > + ?#@ A − B− C − DE − DF GH

Charges:
I = '

'J ∫= LEME + LFMF =NO%

P = '
'J ∫= LE(H − ME) + LF(H − MF) =NO%

Current:

Q = 	
'R
S TU/VWX LE=LF=N ME > − MF(>) Y>

H : Hamiltonian
U : Potential energy
Σ\/^ : Self-energy matrix at the source/drain
Γ\/^ : Broadening function at the source/drain
\̀/^ : Fermi-Dirac distribution at the source/drain

NEGF FE module

VFE (x,	z)
VS/Ch/D (x,	z)

Polarization Interaction

>eA(f) = −
H
'ge 	

Y',$% f
Yf'

hi :	Polarization	interaction	coefficient
uiv : Electric field induced by polarization interaction

,$% f, w = ,E	xVIy
>$%(z, {) ± >}

'~ + "#�$%>$%(z, {),

where	Å = uÇ log
1 + ÖÜ Ö\⁄
1 − ÖÜ Ö\⁄

Gà

Öâ, Öä :	Spontaneous	and	background	polarization
Ö\ :	Saturation	polarization
ÖÜ :	Remnant	polarization
uÇ :	Coercive	electric	field
îïñ : Electric susceptibility of FE

,ó ,ò

a

Methodology 1. By simulating FE-DE, we have shown the
physical origin of the NC effect.

2. Our rigorous NCFET device simulation
proposes device structures that can achieve
steep-switching and hysteresis free
characteristics for different target
applications.

3. FE film thickness study reveals a critical
thickness confirming experimental results.

FE materials exhibit a
hysteretic response to an
applied electric field due to
polarization switching.
Unique to FE materials is
the ability to internally
amplify the voltage when
used along with dielectric
materials – a phenomenon
known as negative
capacitance [2].

Modelling and Simulation of Ferroelectric-
based Negative Capacitance Devices

The FET is a device used to amplify or switch
electrical signals. The motivation to scale down
the size of the FET has been crucial for
producing high performing integrated circuits
by increasing the overall density of transistors
that can fit on a single chip for logic and
memory applications [1]. However, classical
transistor technology is limited by both
undesirable scaling effects and the classical
switching limit which inhibits the switching
performance of these transistors for ultra-low-
power electronics. Hence, there is a clear
incentive to find alternative transistor
technologies.

For the electronic states of the
active channel material, density
functional theory simulations
are used. Tight-binding like
Hamiltonians are generated as
an input to our device simulator.
FE material is modelled using 
Miller Model (MM) instead of 
the conventionally used Landau 
model to accurately capture 
hysteresis. 
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By integrating a
ferroelectric (FE) material
in the conventional FET
structure, it is possible to
achieve steep switching
characteristics beyond the
classical limit.
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Experimental Demonstration

5 nm thick 
Hf0.5Zr0.5O2 [4] HfO2 vs. HZO-

GAAFET [5]

The quantum transport
simulator iterates along with
Poisson’s and FE modules
until the system self-
consistently converges.

FE-DE Structure
We simulate a FE-DE structure to understand
the fundamental physics of polarization
switching in FE on dielectric material using MM.
.

NCFET Nominal Device Results
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