

Quantum Implementation and Measurement Overview

Dr. Kristine Boone, Business Development Aidin Taeb (aidin.taeb@keysight.com), RF/µwave Solution Engineer

2023

Not sharable outside of the University network

Agenda

- Introduction to Quantum Technology
 - >Quantum applications and typical requirements
 - Control and readout of qubits using real signals
 - Superconducting qubits
- Keysight and quantum ecosystem
- Cryogenic Measurement Challenges & Calibration
 - >VNA application in quantum
- ► Introducing new QCS

W KEYSIGHT

Introduction to Quantum Technology

Quantum Technologies – From theory to practice

Two-level systems

Superconducting circuits

Spin Qubits

Photons

M KEYSIGHT

Classical vs. Quantum information

Quantum Computing Experiments

What is a qubit?

Just like a binary bit, qubits have 2 discernable states (0, 1).

Unlike a bit, however, the computational space lies *between* these two states rather than just on them.

Quantum Computing Experiments

What does a quantum computer look like?

Classical

Notice that a quantum computer must seamlessly blend classical and quantum components to function.

Quantum

Quantum Computing Experiments

What does a quantum algorithm look like?

Quantum Circuit: Quantum equivalent of classical logic circuits.

Gate: Quantum equivalent of classical logic gates.

Theory:

Quantum physicists use matrix notation to represent qubit states and gate operations.

Experiment:

Qubit states and gates physically translate to different energy levels (or other physical property) which can be manipulated in the lab.

Control and Readout of Qubits Using Real Signals

Qubit Physical Implementation and Control

Qubit implementation

Any two-level system (|0> - |1>) that has quantum behavior (superposition, entanglement, etc.). E.g.:

- e^{-} orbital \rightarrow trapped ions
- flux → superconducting flux qubits
- e^{-} spin \rightarrow quantum dots
- nitrogen vacancy (NV) spin -> NV in diamonds
- photon polarization \rightarrow photons
- ...

• ...

Qubit control

Performed by applying the energy of the |0> - |1> transition with electromagnetic pulses (RF, uW or optical)

E.g. Trapped ion

Orbital₁=|1>

https://www.keysight.com/us/en/assets/3120-1453/application-notes/Quantum_Computing.pdf

uW / optical

pulses

Control of Qubits – Pulse Area

• Pulse area (amplitude and duration) defines the amount of rotation

Control of Qubits – Pulse Area

• Pulse area (amplitude and duration) defines the amount of rotation

That is also why amplitude stability is important

Control of Qubits – Readout

• Readout projects the qubit (destroys the information) into |0> or |1> → readout result is binary (either |0> or |1>)

• How do we get α and β ($\alpha|0> + \beta|1>$)? \rightarrow statistics

1>

 $1/\sqrt{2} |0> + 1/\sqrt{2} |1>$ Means 50% probability of obtaining |0> and 50% of obtaining |1>

But both have 50% probability of $|0\rangle$ and 50% of $|1\rangle$

Control of Qubits – Readout

• Readout projects the qubit (destroys the information) into |0> or |1> → readout result is binary (either |0> or |1>)

• How do we get α and β ($\alpha|0> + \beta|1>$)? \rightarrow statistics and ROTATIONS

Qubit Types

Many types of qubits

A bit of the action

In the race to build a quantum computer, companies are pursuing many types of quantum bits, or qubits, each with its own strengths and weaknesses.

Note: Longevity is the record coherence time for a single qubit superposition state, logic success rate is the highest reported gate fidelity for logic operations on two qubits, and number entangled is the maximum number of qubits entangled and capable of performing two-qubit operations.

KEYSIGHT

Superconducting Qubits

"Artificial atoms" built out of superconducting circuits

Superconducting Circuit

Resonant circuit.

Leverages collective behavior of electrons in circuit.

Artificial Atom

Qubit has properties of anharmonic multi-level quantum system.

Qubit states are encoded in the lowest energy levels.

Bloch Sphere Representation

Bloch sphere representation of the qubit state, with the ground state $|0\rangle$ at the North pole and the excited state $|1\rangle$ at its South pole.

https://www.keysight.com/us/en/assets/3120-1387/applicationnotes/Characterizing-Superconducting-Qubits.pdf?success=true

Superconducting Qubits – Real Experimental Setup

Superconducting Qubits

Cryostat

https://www.keysight.com/us/en/assets/3120-1387/applicationnotes/Characterizing-Superconducting-Qubits.pdf

Superconducting Qubits

• Performed by applying the energy of the |0> - |1> transition with electromagnetic pulses (uW pulses)

Qubit readout

• Performed by applying pulses to a resonator coupled to the qubit and then measure the amplitude or the phase of the transmitted or reflected signal

https://www.annualreviews.org/doi/pdf/10.1146/annurev-conmatphys-031119-050605

Control and Readout of a Qubit

Where Keysight hardware enters the picture

- Keysight hardware is/will be an integral part of the quantum computer, not just a T&M device
- Each computer will look different
 - Qubit type
 - Number of qubits
 - Connectivity

KEYSIGHT

Keysight HW and SW can be a part of many different quantum computers!

https://www.keysight.com/us/en/assets/3120-1387/applicationnotes/Characterizing-Superconducting-Qubits.pdf?success=true

Challenges

Nothing is trivial

- Lots of synchronization
 - Gates (and even time between gates)
 - Hardware/firmware
 - Software

KEYSIGHT

- Qubit control, 'helper' qubits, readout devices
- Algorithm and error correction

Doing all of this during the qubit lifetime $\ensuremath{\textcircled{\sc 0}}$

M9601A M3202A M3202A M9347A M9300A M3102A SMU AWG AWG LO DDS REF ADC 0 Qubit 0 Z-DC IF-Q \odot 0 RO Z-AC 300 K CRYOSTAT \bigcirc **BB/IF Port** 3 K **RF Port** 10 mK Qubit ---ctrl Readout ----- Misc. Readout resonator Transmon This setup is qubit only 1 qubit! 7 CHIP

Keysight is at the Heart of the Digital Revolution

Accelerating innovation to connect and secure the world

Keysight: A Partner for the Quantum Ecosystem

Pulling Control, Measurements, Data Analysis Together

Key Advantages of Labber

KEYSIGHT

•

•

Keysight's quantum hardware and software stack

• Quantum algorithms Liquid, QASM, ProjectQ, Quil, etc

Quantum compiler

Compile code to qubit gate operations

Control system
 Classical and Quantum control techniques

- Classical hardware
 Apply signals to qubits
- Qubit register
 Where Quantum happens!

Cryogenic Challenges & Calibration - VNA Application In Quantum

Cryogenics for Quantum Computing

Overall Challenges for Qubit Control

- Disruptions such as vibrations
- Thermal energy can excite vibrational motion of quantum computing operations
- Thermal radiation causing unwanted RF transitions
- Power fluctuations
- Fluctuating magnetic fields alter atomic transitions (Zeeman effect)

System Level Architectures

Conditions for Measurements

- Measurements are at 10's of millikelvin temperature
- Attenuators are used to provide thermal isolation and noise reduction to the device being measured
- This means that at the DUT reference plane, we have a very low signal
- The cables used are superconducting, and performance changes with temperature
- Multiple amplifiers are required since signal levels at the coldest stage are around -110 dBm
 - This example architecture is limited to forward s-parameter measurements only

PNA-X – Industry Leader For Active-Device Test

PNA B-model migration v.1.8 DJB

Keysight Advanced-Measurement-Science Example

Conversion gain and group delay through frequency converters, without reference or calibration mixers

- Match-corrected power measurements
- Fast gain compression versus frequency

IMD test using fast frequency or power sweeps

Spur searches with fast, multi-channel, calibrated spectrum analyzer

Quantum Resonator Measurements

MILLIMETER WAVE QUANTUM RESONATOR - STANFORD

Fig. 1. (A) Design of the 4 K experimental setup – WR10 waveguides are connected via horn antennas and windows to the VNA outside of the cryostat, (B) The chip holder can be sandwiched between two waveguide sections, (C) Example of Nb resonator with $f_{res} = 105$ GHz and $Q_{ext} \approx 500$.

• VNA with millimeter wave extenders

Hubert Stokowski1,2, Marek Pechal1,2, Emma Snively3, Kevin K. S. Multani2,4, Paul B. Welander3, Jeremy Witmer1,2, Emilio A. Nanni3, and Amir H. Safavi-Naeini1,2 1Stanford University, Department of Applied Physics, Stanford, CA 94305 USA

Lightwave Component Analysis

igure 15: Screen with LCA measurement (upper window) and Gain Compression Measurement (lower vindow)

The World's First Fully Digital Quantum Control System

Introducing the new Keysight Quantum Control System (QCS)

M5000 Series

High-performance PXI solutions

- Consists of a high-power chassis and five
 PXI modules: RF AWG, Downconverter,
 Digital IO, and Digitizer, and...
- Provides industry leading phase noise and coherency required for applications such as quantum control and radar emulation
- Each card has a programmable FPGA
 which allows fast distributed processing
- ✓ Integration with other PXIe instrumentation

Meet the M5000 Series

Module Description **PXI Digitizer** M5200A 4 Channels, 2 GHz BW, 4.8 GSa/sec, 12-bit, 1 GSa/ch memory PathWave FPGA and PathWave Test Sync Executive Compatible **PXI Down Converter** M5201A 4 Channels, 2-16 GHz RF, 0.01-2.4 GHz IF, Integrated LO **PXI RF AWG** M5300A 4 Channels, DC-16 GHz RF, 2 GHz IBW, 14-bit PathWave FPGA and PathWave Test Sync Executive Compatible **PXI Digital IO Module**

M5302A 28 LVDS Channels, 8 bi-directional triggers PathWave FPGA and PathWave Test Sync Executive Compatible

M KEYSIGHT

QCS – Comprised of new M9000 Series Components designed for Quantum

- Single-slot PXIe
 System Sync Module
- PathWave FPGA
- PathWave Test Sync
 Executive
- 1 Sync-Up/Down

- Dual-Slot PXIe System
 Sync Module
- PathWave FPGA
- PathWave Test Sync
 Executive
- 1 Sync-Up, 4 Sync-Down

Keysight Quantum Control System (QCS)

Ease of Use

- NO external mixers
- NO IQ calibration
- NO FPGA expertise required
- New Quantum Centric Python API
- Timing and synchronization without external cabling

High Performance

- Stable
- Phase Coherent
- Future Proof

Scalable

- PXI industry standard
- Buy just the # of channels you need now, and add on later
- Add other elements you need in your lab like a network analyzer (26GHz, 4CH in 1 PXI slot) without more rack space
- New Quantum Centric Python API

1. Ease of Use

A solution designed for quantum from the ground up

1. Ease of Use - Hardware

✓NO External Mixers needed!

- ✓NO External LOs needed!
- ✓NO I/Q Mixer Calibration needed!
- ✓NO downtime due to calibration!

KEYSIGHT

2. Performance

We put our #1 team on this

2. Performance

Stable: Extremely low phase noise reference clock embedded in chassis
 Phase Coherent: Timing and synchronization all done automatically
 Future Proof: DC to 16 GHz, scalable to 1000 qubits and beyond

<u>Clean</u> Signals via Direct Digital Signal Generation

Freq

Enabling high-fidelity gates

KEYSIGHT

LO rejection and image suppression require IQ imbalance calibration which drifts over time

Improved SFDR (Spurious-Free Dynamic Range)

II 🕷

 \sim

Digital

Fully digital generation does not have LO or image, and it does not require any calibration

Quantum Control System (QCS)

The QCS is a full-stack solution. It gives low-level access at the level of quantum devices but is NOT a build-it-yourself toolbox

M KEYSIGHT

QCS API Overview and Structure

How does the QCS API lend itself to quantum experiments?

- Before: Customers write quantum experiments in terms of classical hardware and connections.
- Now: Customer write quantum experiments in terms of quantum specific components and language.

Before

1. Send pulse A with xyz parameters from AWG

(Slot 3, Channel 1) to Qubit 1.

2. Send pulse B with abc parameters from AWG

(Slot 4, Channel 2) to readout line.

3. Read Digitizer Channel 1 signal.

Now

- 1. Apply H-gate on Qubit 1.
- 2. Measure Qubit 1 state.

W KEYSIGHT

QCS API Overview and Structure

What is the customer workflow?

DEFINE

hardware modules, configurations, and connections. classical components to quantum components.

MAP

WRITE

experiments easily in the language of quantum.

When a new quantum component and its mapping to classical channels is defined, the software can use that component throughout the stack.

QCS has a 100% new Software API for Ease of Use

20	He all. Yan kan kenel kor	Selfap- Help
	💶 🖬 🖬 🖉	E Laurine × ≤ CLL M (network phr. x. +
	District a Difference O	B + K îi îi + ∎ 0 + Cade - B Pythan21(bytanet 0
0	Ber and a second second second	the sectore agend in prodici(puttor, pay proceeding) take (*(**))
	Have a testing	The second second generalized by the second se
	analogy analogy	 Set of a shift as a construction of decision Set of a shift of a construction of decision
	👷 quidesay a day ago	1 the second approximation plantation (second plantation (second plantation (second plantation)) and the second plantation (second plantation)
	a celly laws a ray age	Chapter and an gard and gard of the second
	rat av a day ago	for pair is paired
1		[2]: Ext = %(Expanse)(Un_apple) External = plot(ang_becked.Size(angbecked)) External (balon state (balon state))
		System 2 instant the channel
	z tinà	
	101	
	x T T Y	÷ / / / / / / / / / / / / / / / / / / /
	$ 1\rangle$	
2	inge 🦉 🖬 🕄 🖓 lysionali	

KEYSIGHT

QCS Code Snippet Overview*

Simplicity in Use: Less Lines of Code

Pulse Sequence

sequence =	[
	q1.xy.pulse(amplitude=0.5),
	q1.delay(500e-9),
	q1.xy.pulse(phase=90, sigma=5e-9)
]	

Qubit to System Mapping

entity Transmon q1: readout: readout1 awg: awg1x1 channel: 1 pulses: entity GaussianPulse

Pulse Definition

lass GaussianPulse(Pulse):								
sigma: float = CalParam(10e-9)								
"""Pulse width standard deviation"""								
<pre>chop: float = CalParam(4)</pre>								
"""Total number of	standard	deviations	of	width"""				

3. Scalability

QCS to 1000 qubits and beyond!

A Scalable Control System

Scalability as your QPU grows

Example of a 500-qubit control system (without FDM for control)

What is the max #chassis supported? Not defined yet, the underlaying technology is truly scalable

2 GHz BW enables massive Frequency Division Multiplexing (FDM)

(e.g. with 1:4 FDM the same system could control ~2000 qubits)

Multi-host multi-chassis operation on SW stack roadmap

Support for massive number of qubits also on SW stack roadmap

Please contact us

54

Test Scenario with QCS

Demo Flow

Superconducting qubit characterization

Demo Quantum Configuration

Superconducting qubit chip

M KEYSIGHT

Qubit Spectroscopy

Qubit Spectroscopy – What is it?

Qubit Characterization Pt. 1

Goal: Find qubit frequency

- 1. Send control and readout pulse.
- 2. Control pulse is scanned over frequency.
- 3. Readout signal spikes at qubit frequency.

Qubit frequency: Resonance frequency of qubit.

Rabi

Rabi Experiment – What is it?

A Rabi experiment is used to calibrate the amplitude needed to drive a **pi-pulse**, a foundational element for quantum sequences.

Goal: Find Pi Pulse parameters

- 1. Send control and readout pulse.
- 2. Control pulse is scanned over amplitude (pulse duration kept constant).
- 3. Duration of the pulse that caused a 180 degree rotation is the pi pulse.

Pi Pulse: What kind of pulse do we need for a 180 degreed rotation on the Bloch Sphere?

Come find out more on Keysight.com

https://www.keysight.com/ca/en/solutions/emerging-technologies/guantum-solutions.html

W KEYSIGHT

Contact Us | 🤱 🖵 🛞 🔍

Emerging Technologies The World's First Fully Digital Quantum Control Syster is Here Accelerating Quantum Innovation

Streamline your quantum experiments with our new system - designed for quantum from the ground

Learn more

Solution Briefs 2022.08.07

Quantum Control System (QCS) - The world's first fully digital quantum control solution

Featured Resources

Tested PC and PXI/AXIe Chassis Configurations

This document provides a list of personal computers which are compatible with the M9005A, M9010A, M9018B, M9019A PXIe Chassis and the M9502A, M9505A, M9506A, M9514A AXIe Chassis.

